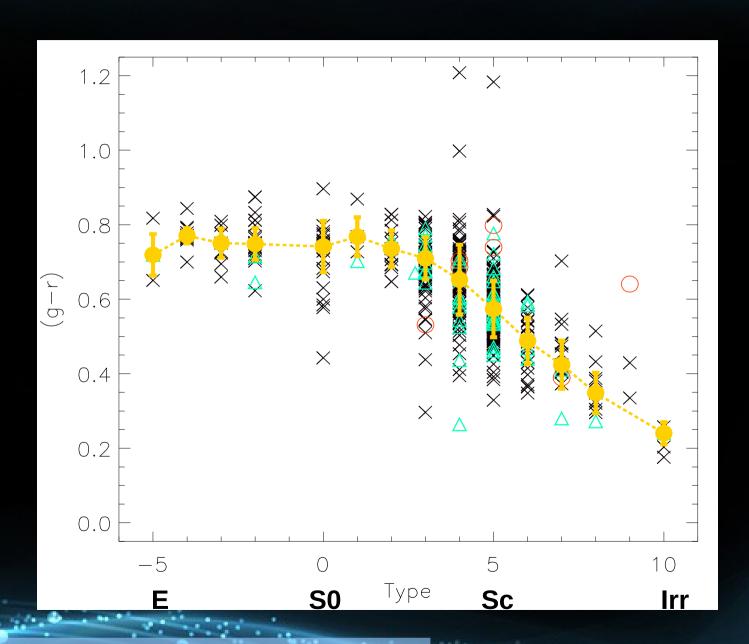
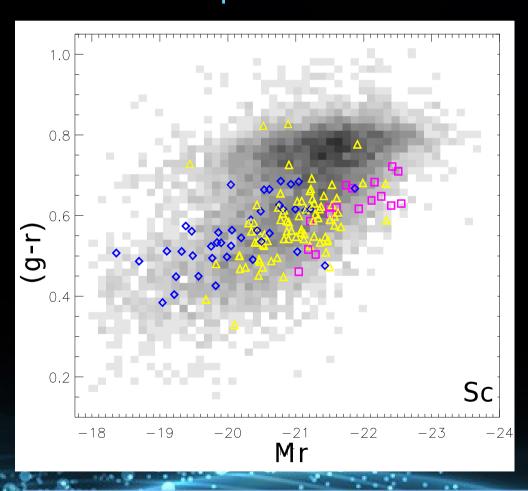

Effects of Secular Evolution on the Star Formation History of Galaxies

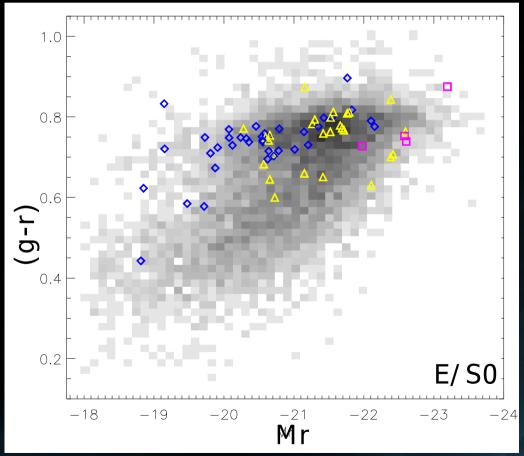

Mirian Fernández Lorenzo

AMIGA: Analysis of the Interstellar Medium of Isolated GAlaxies

- Catalogue of Isolated Galaxies (CIG) 1051 (Karachentseva 1973)
 - Very restrictive selection criteria No major tidal interaction within the last ~3 Gyr
 - Better than field (pairs, loose groups)
 - Revision and quantification of the isolation we continue cleaning the sample
- Goal: to quantify the properties of the AMIGA sample
 - To study the properties at all wavelength
 - To minimize non-secular evolution effects
- Study of Star Formation History of isolated galaxies:
 - Optical colors of the AMIGA sample (Fernández Lorenzo et al. 2012, A&A, 540, 47)
 - Stellar mass-size relation for isolated galaxies

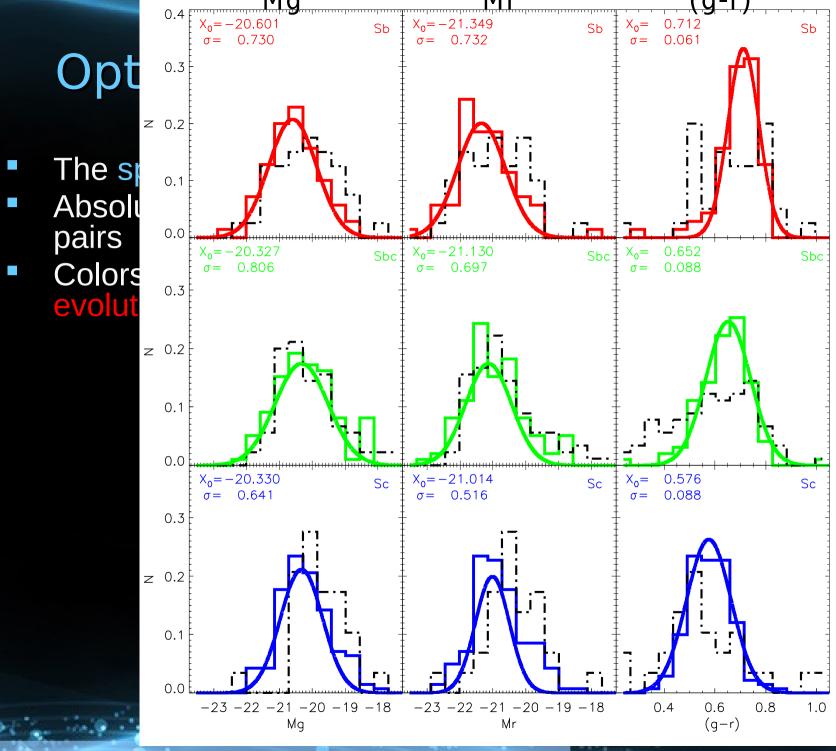
- SDSS database Model magnitudes in g and r-bands (DR8~800)
- Sample selection:
 - Isolation criteria of Verley et al. (2007)
 - Completeness condition (MagB<15.3)
 - 466 AMIGA galaxies
- Three samples of comparison:
 - Catalogue of isolated Pairs of Galaxies (CPG; Karachetsev 1972)
 - Nair & Abraham (2010)
 - EFIGI catalogue (Baillard et al. 2011)


- Major source of color dispersion ⇒ color-luminosity trend
- Bias of color versus recession velocity


AMIGA sample:

0.005<z<0.02

0.02 < z < 0.04


z > 0.04

- The spiral close pairs are bluer than AMIGA (but within the errors)
- Absolute median deviations are greater for both wide and close pairs
- Colors of AMIGA show a Gaussian distribution nurture free evolution

Type	Т	AMIGA	NAIR	EFIGI	CPG	CPG
					(WID)	(CLO)
Е	-5	0.72 ± 0.06	0.78 ± 0.03	0.78 ± 0.03	0.79 ± 0.03	0.76±0.03
E	-4	0.77 ± 0.02	_	0.78 ± 0.02	0.80 ± 0.08	0.79 ± 0.04
E/S0	-3	0.75 ± 0.04	0.76 ± 0.05	0.77 ± 0.04	0.79 ± 0.06	0.77 ± 0.07
SO	-2	0.75 ± 0.04	0.76 ± 0.04	0.76 ± 0.04	0.78 ± 0.06	0.77 ± 0.06
S0	-1	_	_	0.78 ± 0.06	0.72 ± 0.05	0.73 ± 0.09
S0/a	0	0.74 ± 0.07	_	0.76 ± 0.07	0.77 ± 0.05	0.78 ± 0.04
Sa	1	0.77 ± 0.05	0.71 ± 0.06	0.73 ± 0.05	0.72 ± 0.11	0.71 ± 0.09
Sab	2	0.74 ± 0.05	0.69 ± 0.07	0.72 ± 0.07	0.71 ± 0.10	0.67 ± 0.15
Sb	3	0.71 ± 0.06	0.67 ± 0.08	0.71 ± 0.08	0.71 ± 0.13	0.69 ± 0.12
Sbc	4	0.65±0.09	0.61 ± 0.08	0.66 ± 0.07	0.63 ± 0.12	0.59 ± 0.14
Sc	5	0.57±0.08	0.56 ± 0.08	0.62 ± 0.09	0.69 ± 0.12	0.51 ± 0.15
Scd	6	0.49 ± 0.06	0.46 ± 0.07	0.58 ± 0.09	0.55 ± 0.11	0.51 ± 0.17
Sd	7	0.42 ± 0.06	0.42 ± 0.06	0.47 ± 0.08	0.34 ± 0.17	0.43 ± 0.10
Sdm	8	0.35 ± 0.05	0.41 ± 0.07	0.44 ± 0.12	0.48 ± 0.07	0.30 ± 0.12
Sm	9	_	0.36 ± 0.09	0.40 ± 0.16	_	0.56 ± 0.13
Im	10	0.24 ± 0.03	0.33 ± 0.10	0.29 ± 0.09	_	0.29 ± 0.12

le

he errors) d close

free

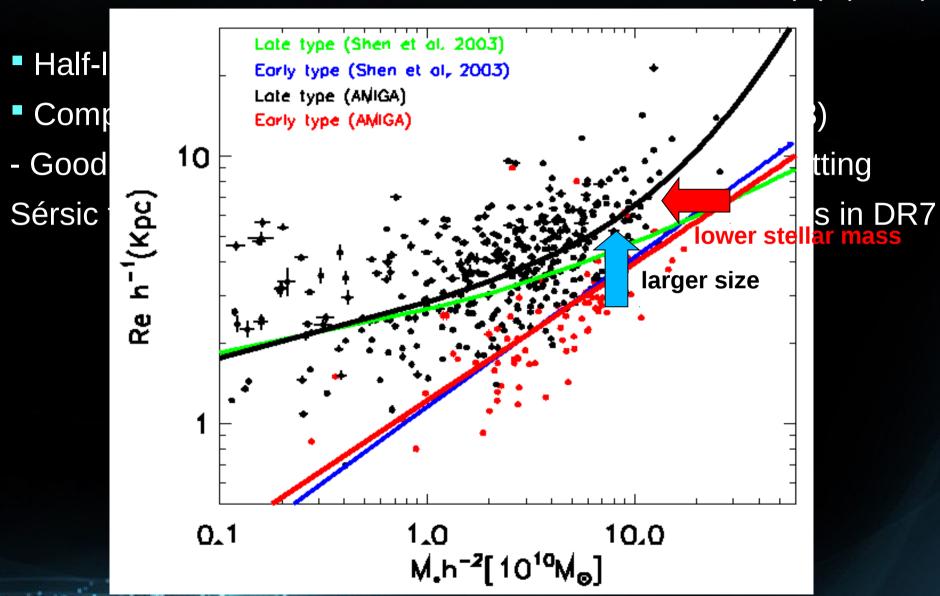
Conclusion:

The redder colors of AMIGA spirals and lower color dispersions compared with close pairs, is likely due to a more passive star formation in very isolated galaxies.

(Fernández Lorenzo et al. 2012, A&A, 540, 47)

On-going work:

Using directly the images to measure the colors, due to the bias introduced by SDSS/DR8 automated measures


- Growth in size of early and late-type galaxies since z=2-3 (Trujillo et al. 2007) caused by:
 - "Dry" minor mergers (Bell et al. 2005, van Dokkum 2005)
 - Expansion driven by quasar feedback (Fan et al. 2008), stellar winds and supernova explosions (Franx et al. 2008)
- Environmental studies of the stellar mass-size relation
 - No dependence (Rettura et al. 2008, Maltby et al. 2010)
 - z~1 cluster galaxies similar to z=0 (Cimatti et al. 2008)

Are our isolated galaxies smaller than other galaxies?

- DR8 images of all AMIGA galaxies in SDSS (N ~ 800)
 - Mask of the stars
 - Determination of parameters with SExtractor
 - Ks-band photometry of 2MASS
 - We calculated stellar masses using k-correct (Blanton et al. 2007)
- Sample selection:
 - Galaxies that follow the isolation criteria of Verley et al. (2007)
 - Completeness criteria: mag B<15.3 (~mag r<14.5)
 - 466 galaxies follow these conditions

- Half-light radius given by SExtractor as size
- Comparison with the local relations of Shen et al. (2003)
- Good agreement with the effective radius obtained by fitting Sérsic function with Galfit for a subsample of ~80 galaxies in DR7

Fernández Lorenzo et al. (in preparation)

- Half-light radius given by SExtractor as size
- Comparison with the local relations of Shen et al. (2003)
- Good agreement with the effective radius obtained by fitting Sérsic function with Galfit for a subsample of ~80 galaxies in DR7

- Lower stellar mass no external processes have increased their star formation during most of their life?
- Larger sizes have they accreted more small satellite galaxies than other local objects?

Work in progress