Nature or Nurture in Galaxy formation and evolution

Theoretical problems & Perspectives

Françoise Combes Observatoire de Paris *Granada, 15 May 2009*

Solved questions ?

→ Are there isolated galaxies? May be! Robust definitions, criteria (Karachentseva, AMIGA..)

→ The Void Problem? Solved at zeroth order!
Environment is a secondary parameter (Tinker, Croton)
But expected dwarfs are not there (Koribalski)

 → Compact Groups: a real nurture effect!
 CA? (Mamon), colors, SF, morphology (McConnachie), AGN (Dultzin, Martinez)

→ Isolated early-type galaxies: Fossil Groups?
 20% ETG in LDE (Forbes)

Remaining questions

→Luminosity functions versus environment:
 +Low efficiency of SF: 6% of baryons in stars and visible gas
 Feedback from SF and AGN

→ Bimodality, and mass limit of 3 10¹⁰Mo??
 Variation of the limit with environment?
 (radio mode, but less AGN in LDE)

Downsizing and environment
Obvious ways to quench SF: harassment strangulation..

→ Bulge-less galaxies? vs environment
 Very large fraction of them in isolated galaxies
 Problem for ACDM hierarchical scenario?

Mass & Light DF

ACDM SAM: Too many bright and too many faint galaxies

Baugh 2006, Eke et al 2006, Jenkins et al 2001

SF Feedback to fit faint end

Gas is heated in dwarfs, but falls in heavier haloes → worsen the bright end problem

Somerville et al 2008

→ Requires AGN feedback at the bright end

Red sequence & Blue cloud

Color-Magnitude diagrams (CMD) 150 000 galaxies in the SDSS

Baldry et al 2004

Parameter: essentially SFR But SFH, dust, age, metallicity..

→2 different formation mechanisms Separating stellar mass 3 10¹⁰Mo

Fraction in red sequence increases with mass and environment

Baldry et al 2006

SF History depends on surface density

LSB dwarfs HSB high mass

Transition at $M_*=3 \ 10^{10} \text{ Mo}$, or $3 \ 10^8 \ \text{Mo/kpc}^2$ SFH depends more on surface density than on mass

Kauffmann et al 2003

There is a transition where the gas begins to outflow, at the V_{SN} velocity ~100km/s

Origin of the bimodality

Above a certain mass $(3\ 10^{11}\,M_o)$, the gas is not accreted cold, but is heated in shocks and has no time to cool (or AGN feedback) Dekel & Birnboim 2006 Keres et al 2005

→ Or above a certain surface density of stars (3 $10^8 M_o/kpc^2$), the gas is quickly transformed into stars, and the time spent in the « blue » regime is short.

The bimodality as a function of M (SAM) Baldry et al. 2004 $M_r = -22.75$ **Blue & bright** $M_r = -21.25$ **Not enough green**

Excess of blue bright objects, and red faint satellites→Gas accretion on the satellites?

The star formation history

Galaxy age vs environment

In clusters, massive ETG are older and more metallic Mateus et al 2007

Galaxy metallicity vs environment

Mateus et al 2007

Problem of bulge-less galaxies

-Locally, about 2/3 or the bright spirals are bulgeless, or low-bulge Kormendy & Fisher 2008, Weinzirl et al 2008

-Frequency of edge-on superthin galaxies (*Kautsch et al 2006*) **1/3 of galaxies are completely bulgeless**

-SDSS sample : 20% of bright spirals are bulgeless until z=0.03 (*Barazza et al 2008*)

→ In low-density environment (Karachentsev on Wednesday)

In Λ CDM, a B/T<0.2 galaxy requires no merger since 10 Gyr (z>2) Predicted frequency: 15 times lower than observed

Comparison with predicted B/T

Semi-analytic models, with major mergers (mass ratio <1/4) *Weinzirl et al 2008*

Cold accretion on galaxies

Previous assumption: shock heating to the Virial temperature

But: Cold gas falling along filaments, the fraction of cold gas being larger in low-mass haloes $(M_{CDM} < 3 \ 10^{11} M_{o})$

Relative role of gas accretion and mergers

Dekel et al (2008)

Most of the starburst are due to smooth flows

Inflow rates are sufficient to assemble galaxy mass (10-100 Mo/yr) Galaxy aligned along a wall between voids Talk of R. van de Weygaert, and winning poster!

Gas from the cosmic filaments flowing to the wall, and perpendicular to it → Formation of the gaseous polar disk Up

Stanonik et al 2009

Perspectives

→ Role of both Nature and Nurture ?:

-faster evolution and merging in dense regions, that will become clusters -when cluster is formed: strangulation, ram-pressure, harassment

 \rightarrow SF and AGN feedback to fit the L-function, and f_bar in stars

→ Downsizing partly due to environment, but models have
-still too many bright blue objects at z=0
-and too many red faint satellites

→ May be gas accretion should not be stopped for these faint satellites -would enhance also the green valley