

What means "ISOLATION"?

 $C₁$

Cosmological models predict numerous satellite galaxies around Hubble-type gal.s … and associations to loose groups.

FIG. 23. Integrated neutral hydrogen maps of the brightest spirals in the Virgo Cluster center. Each map has been drawn at the galaxy position indicated by a cross and magnified by a factor of 5 compared with the scale in right ascension and declination. The first contour in each map corresponds approximately to a column density of 10^{20} atoms cm⁻² (even if it is not the case in the maps published in Figs. 1-22 especially for NGC 4388, 4450, 4569, 4694).

Cayatte et al. (1984)

HI distribution of spirals in the Virgo Cluster: Gas def. is higher the closer gal.s to cluster center!

Where are the PRS survivors and how do they look like?

We expect to observe galaxies with truncated gaseous disks in the outskirst of clusters with higher probability because of their longer periode at pericentric orbit.

Figure 2. Distance of the galaxy from the cluster centre

Disk-dominated SO's as candidates of RP-stripped galaxies?

Why are those S0s gas free?

VCC2095

© Anglo-Australian Observatory

Deficiency definitions

Giovanelli & Haynes (1985): $def = \langle \log X \rangle_{T.D} - \log X_{obs}$

 $\boldsymbol{X}_{\text{a}}$: e.g. HI mass $\langle \log X \rangle_{r,n}$: value averaged over field galaxies of morph. type T and opt. diameter D

Gavazzi (1987)

$$
\frac{M_{HI}}{S_{HI}} = 2.36 \cdot 10^5 \cdot D^2 \cdot S_{HI}
$$

$$
S_{HI}
$$
: HI flux

$$
\boldsymbol{Def}_{HI} = \left\langle \boldsymbol{C}_1 + \boldsymbol{C}_2 \log d_l^2 \right\rangle - \log \boldsymbol{M}_{HI,obs}
$$

 d_i : linear diameter

numerical models: $\textit{def} \equiv \log \left(\frac{M_{HI}^{in}}{M_{HI}^{fin}} \right)$

Anemic HI Def>1

 \blacksquare SO/SBO

Anemic HI Def 0,5-1

Hdef = 0.71 D(M87) > 2.77 Mpc

Sternig, G.H., et al. (2009) in prep.

 $m = 13.89$ type = Sc (dSc) Copyright @ 2008 Sloan Digital Sky Survey

Disk-dominated S0s are distributed in clusters as normal S0s/Es, while anemic galaxies show the expected increase at large r! Sternig (2009) dipl. thesis,

 13

10

8

 Δ

7

6

 $\overline{2}$

6

フ

 $\overline{2}$

 \bigcap

R.A. (2000) 12 35 36.17 Dec. (2000) 3 2 4.90

 $2,5$

 Δ

1

 $\mathbf{1}$

 $3,5$

 $\mathbf{1}$

∩

3

 Ω

 \cap

Solanes et al. (2002)

© Anglo-Australian Observatory

Fig. 2.—Individual values of DEF for the 161 members of the 21 cm ample as a function of the LOS distance. Dotted lines show 2 times the standard deviation shown by the values of this parameter in field galaxies. Horizontal error bars represent the 1σ uncertainties of the distances quoted in the literature with respect to the calculated mean values. The triangle narks the distance to M87 quoted in LEDA. The vertical error bar in the point closest to us shows an estimate of the typical uncertainty of the indi- $+4^{\circ}$ vidual values of DEF expected from random errors in the determination of the observables a_{opt}^2 , F_{DEF}^c , and T that enter in the calculation of this +2° parameter.

HI deficiency exists even in the *outskirts* **of clusters!**

KOOPMANN & KENNEY

TABLE 2 POPULATIONS OF STAR FORMATION CLASSES FOR CLUSTER AND ISOLATED ENVIRONMENTS

NOTES.-Percentages and numbers of isolated and Virgo Cluster galaxies in the star formation classes described in § 2. The last three rows sum the total numbers of truncated galaxies and the total numbers of galaxies with anemia or enhancement over at least part of the star-forming disk.

FIG. 13.—Cluster radial distributions of each H α class, plotted as percentages of all the galaxies in that radial bin. Bins are $\leq 3^{\circ}$, $3^{\circ} - 4^{\circ}5$, and $\geq 4^{\circ}5$. Error bars correspond to 1 galaxy, comparable to the uncertainty in our H α classification. There is a clear radial dependence for the normal and truncated/ normal classes, with fewer normal and more truncated/normal galaxies closer to the cluster center. Other $H\alpha$ classes have a flatter distribution (but contain fewer sample galaxies).

Questions:

- **HI deficient/anemic galaxies populate the** *outskirts* **of clusters: Who would attribute the HI def. at separation of >10 Mpc to cluster effects?**
- **Star formation "strangulation" of anemic galaxies. SF correlates with the HI reservoir?!** Infall!
- **How does infall determine the SF rate?**

Right Ascension (J2000)

<u>Gas Infall to a multi-phase ISM with SF</u>

Analytical approach as in Koeppen, Theis, G.H. (1995, 1998) Limitation: not closed box, but no ISM disk stratification

hot gas warm clouds stars remnants gas energy cloud energy

$$
\begin{aligned} \dot{g} &= \frac{\eta}{\tau}s + E_c - K_g\\ \dot{c} &= -\Psi - E_c + K_g + A_c\\ \dot{s} &= \xi\,\Psi - \frac{1}{\tau}\,s\\ \dot{r} &= (1-\xi)\,\Psi + \frac{(1-\eta)}{\tau}\,s\\ \dot{e}_g &= h_{SN}\,s - g^2\,\Lambda_0(T_g) + E_c\,b\,\tilde{T}_c - K_g\,b\,T_g \end{aligned}
$$

$$
\dot{e}_c = h_\gamma \, s - c^2 \, \Lambda_0(T_c) - E_c \, b \, T_c + K_g \, b \, \tilde{T}_g - \Psi \, b \, T_c + b \, T_{A_c} \bigg[A_c + \frac{1}{2} \, v^2 \bigg] A_c
$$

Star-formation rate

ξ **: mass star fraction** ^τ **: SF timescale** ^η **: mass return fraction** *Ec* **: evaporation** *Kg* **: condensation** *Ti* **: temprature**

 $\Psi(c, T_c) = C_n c^n exp\{-T_c/10^3 K\}$

Pflamm dipl. thesis Pflamm, G.H., Köppen (2009) in subm.

<u>Self-requlated</u> evolution without gas infall

solar vicinity; units in Myrs, M_{\odot} , pc

star formation self-regulation: due to collisionally excited line cooling $\sim n^2$

but: SFR low

continuous gas infall

· different accretion rates A

at 10 km/s (upper curve to lower): $2.83 \cdot 10^{-5}$ M_o/(pc³ Myr) $2.83 \cdot 10^{-6}$ M_o/(pc³ Myr) $2.83 \cdot 10^{-7}$ M_o/(pc³ Myr) $2.83 \cdot 10^{-8}$ M_o/(pc³ Myr) Self-regulation

4000 time/Myrs⁶⁰⁰⁰

8000

10000

· velocity studies at $2.83 \cdot 10^{-6}$ M_o/(pc³ Myr): 10 km/s, 50 km/s, 100 km/s

· issues:

SFR increases and approaches a constant value

 $1e-07$

 Ω

2000

$$
r(t) = r_0 + \int_0^t \left[(1 - \xi)^2 \Psi(x) + \frac{1 - \eta}{\tau} s(x) \right] dx
$$

\n
$$
r(t) \text{ is monotonically increasing!}
$$

\n
$$
s = 0 = \xi \cdot \Psi - \frac{1}{\tau} s \implies s = \xi \cdot \tau \cdot \Psi
$$

\n
$$
\dot{s} = 0 = \xi \cdot \Psi - \frac{1}{\tau} s \implies s = \xi \cdot \tau \cdot \Psi
$$

\nwith α := K · g - E · c
\n
$$
\dot{s} = 0 = E \cdot c - K \cdot g + \frac{\eta}{\tau} s \implies \tau \cdot \alpha = \eta \cdot s \implies \alpha = \frac{\eta}{\tau} s
$$

\n⇒ condensation > evaporation, i.e. overcompensation of c reduction by SF
\n
$$
\dot{c} = 0 = -\Psi + K \cdot g - E \cdot c + A_c \implies \Psi = \alpha + A_c = \frac{\eta}{\tau} s + A_c
$$

\n
$$
\Psi = \alpha + A_c = \eta \cdot \xi \cdot \Psi + A_c \implies \Psi = \frac{1}{(1 - \eta \cdot \xi)} A_c
$$

\n0 < (1 - \eta \cdot \xi) < 1, $\eta \cdot \xi \approx 0.11$
\n⇒ $\Psi \approx 1.12 A_c$
\n
$$
\frac{\partial \phi}{\partial t} = \frac{\partial \phi}{\partial t} \frac{\partial \phi}{\partial t}
$$

\n
$$
\frac{\partial \phi}{\partial t} = \frac{\partial \phi}{\partial t} \frac{\partial \phi}{\partial t}
$$

\n
$$
\frac{\partial \phi}{\partial t} = \frac{\partial \phi}{\partial t} \frac{\partial \phi}{\partial t}
$$

\n
$$
\frac{\partial \phi}{\partial t} = \frac{\partial \phi}{\partial t} \frac{\partial \phi}{\partial t}
$$

\n
$$
\frac{\partial \phi}{\partial t} = \frac{\partial \phi}{\partial t} \frac{\partial \phi}{\partial t}
$$

\n
$$
\frac{\partial \phi}{\partial t} = -\Psi - E_c + K_g + A_c
$$

\n
$$
\frac{\partial \phi}{\partial t} = \frac{\eta}{\tau} s + A_c
$$

\n
$$
\frac{\partial \phi}{\partial t} =
$$

Star formation

Infall of a cloud with Jeans mass of

 $10^5 M_{\odot}$ (curves from left to right): 400, 100, 50, 10, 1 km/s

 $10^4 M_{\odot}$ \bullet (curves from left to right): 100,10,1 km/s

Starbursts occur

Pflamm, G.H., Köppen (2009) in prep.

Analytical Approach to Cloud infall

• cloud mass 10^5 M_o (curves from left to right): 400, 100, 50,10, 1 km/s \leftarrow

• cloud mass 10^4 M_o (curves from left to right): 100,10, 1 km/s

> • mass studies (curves from upper down): $10^4 \, \text{M}_{\odot}$, $10^5 \, \text{M}_{\odot}$, $10^6 \, \text{M}_{\odot}$

Conclusions:

If *Isolations* **means "void of neighbours = empty field", distant galaxies with "cluster history" are misinterpreted!**

Isolation **is mismatched from optical observations: Environments of gas envelopes and satellite galaxies effect galaxy evolution**

the N/O problem of dirrs/BCDs

early evolution only: track through **DLA** regime at later epochs: models settle at secondary N-line, But: no return to dIrr regime!

- **dIrrs are very young like DLAs: no!**
- **O loss by galactic winds: O/H-N/O**
- **Starbursts produce fresh O: O/H-N/O**
- **Infall of pristine gas: O/H-N/O**

10.3. Gas Infall and its Effect on Abundances

Köppen, G.H. (2005) A&A, 434

Model assumptions :

 Yields same as in Henry, Edmunds, Köppen (2000): van der Hoek & Groenewegen (1997), Maeder (1992)

 Galaxy models evolve for 13 Gyrs with different y_{eff} of 0.1 ... 1

⇒ different locations in (N/O)-(O/H) diagram

 \triangleright Infall of clouds with primordial abund. and masses of $10^6... 10^8$ M_{\odot}.

Results :

Extension of tracks depends on y_{eff} (N/O) scatter reproducible by age differences of start models

Köppen, G.H. (2005) A&A

continuous gas infall $A_c = 2.83 \ 10^{-6} \ M_{\odot}/(pc^3 \ Myr) = 2 \ M_{\odot}/yr \ (R=15 \ kpc, H=1 \ kpc)$
10 km/s 100km/s 10 km/s 0.00 0.01 0.001 0.01 cloud density gas density
es density gas density
88 cloud density $1e-05$ 0.001 0.001 $R000$ 10000 $\frac{1}{2000}$ 8000 $1e-05$ 2000 sonr 3000 10000 2000 4000 9000 6000 $1₀₊₀₇$ 10000 $10+07$ 10000 $18+0$ cloud temperature gas temperature
รู้
ต cloud temperature tempe $\overline{\overset{5}{\text{g}}}$ $\frac{10000}{\text{g}}$ 1000 1000 100000 1000 2000 400 $\frac{1}{2000}$ 10000 2000 **ROOC** $\frac{1}{2000}$ 4000 \sin 8000 10000 ສາດດ 8000 1e-05 $1e-05$ $1e-05$ 1e-05 1e-06 $10 - 06$ 1e-06 $1e-0$ $1e-07$ $\begin{bmatrix} 1e^{-0.7} \\ 0 \\ 0 \\ 0 \end{bmatrix}$ $\frac{5}{10}$ 1
 $\frac{1}{10}$ 1
 $\frac{1}{10}$ $\frac{5}{\pi}$ 1e-08 56 1e-06 evapor
evapor $\frac{8}{6}$ 10-9 1e-08 $10-10$ $10-10$ 1e-09 $1e-11$ $1e-11$ $10 - 12$ $10-12$ $10-07$ $1e-10$ 8000 2000 4000 6000 8000 4000 6000 8000 10000 2000 4000 6000 10000 10000 $1e-05$ 1e-05 $1e-05$ $1e-05$ 1e-06 1e-06

 $1e-06$ $\frac{1}{\sqrt{\pi}}$ $1e-08$ $10-09$

stellar density
 $\frac{1}{8}$

1e-09

 10^{10}

2000

4000 6000
time/Myrs

8000

10000

10000

8000

4000 6000
time/Myrs

 2000

10-06

 $\frac{1}{3}$ condensation

1e-08

 $10-09$

2000

4000 6000
time/Myrs

8000

 $\frac{\text{stellar density}}{\frac{a}{6}}$

 $1e-09$

 $10-10$

2000

4000 6000
time/Myrs

10000