Toy model of galaxy formation

Cattaneo, Mamon, Riebe & Knebe 09 in prep

Toy model of galaxy formation

Cattaneo, Mamon, Riebe & Knebe 09 in prep

The Nature & properties of Compact Groups of Galaxies from cosmological simulations

Hickson Compact Group 40 CISCO (J & K') Subaru Telescope, National Astronomical Observatory of Japan January 28, 1995 with (all in Cordoba, Argentina)

- Eugenia DÍAZ-GIMÉNEZ
- Cinthia RAGONE-FIGUEROA
- Hernán MURIEL
 - arXiv:0908.3483

Gary MAMON (IAP & Oxford), 14 May 09, Galaxies in Isolation, Granada, Nature & properties of compact groups of galaxies from cosmological simulations

Defining a Compact Group

Hickson 82

- Compact: μ_R < 26
- Rich: $N \ge 4$ within R_1 , R_1+3
- Isolated: empty ring within R₁, R₁+3

100 HCGs

Hickson et al. 92

Accordant velocities: $|v - \langle v \rangle| < 1000 \text{ km/s}$

55 (not 92) accordant velocity HCGs

Are Compact Groups an extreme galaxy environment?

1000x greater than required for dynamical equilibrium

ideal laboratory for galaxy interactions & mergers

Compact Groups in X rays

Emissivity of X-ray gas

→ fewer projection effects

extended diffuse hot gas

Elliptical-rich, high velocity dispersion, diffuse X rays centered on dominant giant elliptical (often AGN)

Spiral-rich, low velocity dispersion, little diffuse X rays, no dominant gE

Osmond & Ponman 04

Gary MAMON (IAP & Oxford), 14 May 09, Galaxies in Isolation, Granada, Nature & properties of compact groups of galaxies from cosmological simulations

Nature of Compact Groups selected in redshift space

real dense Hickson & Rood 88

1 Mpc

chance alignment within loose group (CALG)

Rose 77; Mamon 86, 87; Walke & Mamon 89

chance alignment within filament (CAF) Hernquist, Katz & Weinberg 95 $\Delta v = 1000 \text{ km/s} \Rightarrow \text{CGs up to 20/h Mpc long!}$

Arguments against real CGs

Mamon 86, 87, 92

mergers rapidly transform group \rightarrow single elliptical Barnes 85, Mamon 87, Barnes 89, Bode et al. 93; but see Governato et al. 94, Athanassoula et al. 97 naïvely form at z = 8!

normal luminosity function mergers \rightarrow high $\langle m_2 - m_1 \rangle$

morphology-density relation: too many spirals

no luminosity segregation

chance alignments should be frequent Walke & Mamon 89

signs of interactions:

binaries in chance alignment

Low velocity dispersion HCGs off Fundamental Track

are low velocity dispersion HCGs caused by chance alignments?

Gary MAMON (IAP & Oxford), 14 May 09, Galaxies in Isolation, Granada, Nature & properties of compact groups of galaxies from cosmological simulations

Formation rate

but ...

extended Press-Schechter

dense groups should form at sufficient rate to replenish those lost by coalesence

Mamon 00 (IAU coll.)

A direct test

SBF = Surface Brightness Fluctuation (accurate distance estimator)

Virgo cluster CG = chance alignment!

11

The nature of CGs from simulations

Díaz, Ragone, Muriel & Mamon 08, MNRAS subm.

- Millennium dark matter simulation: 10G particles!
- 3 different galaxy formation codes: 7M galaxies Croton et al. 06 M_R < -17.4 Bower et al. 06 De Lucia & Blaizot 07
- mock samples in redshift space: 1M galaxies
 R < 17.44
- mock projected CGs: 12k mpCGs
- mock velocity-accordant CGs: 7k mvCGs
- mock velocity-accordant CGs with HCG biases 350 mvHCGs

biases in HCG sample

Diaz, Ragone, Muriel & Mamon 08

ary MAMON (*IAP* & Oxford), 14 May 09, Galaxies in Isolation, Granada, *Nature & propert*.

biases in HCG sample

number density of mock CGs = 50x that of HCGs

Hickson missed CGs:

- fainter
- small angular size
- lower surface brightness
- with dominant brightest galaxy

also Walke & Mamon 89 Prandoni et al. 94

Díaz, Ragone, Muriel & Mamon 08

Differences in 3 SAMs

SAM	Bower et al. 06	Croton et al. 06	De Lucia & Blaizot 07
galaxy positions	statistical	subhalos	
galaxy merger rate	complex	Springel+01	1/2 Springel+01
IMF	more hi mass	Salpeter	fewer low mass
galaxy colors	too blue	?	a little red
Red Sequence	OK	flattens at high luminosity	
small-scale correlation of recent SF Mateus et al. 08	OK	?	too strong

Mock CGs: what is a dense group?

Mock CGs: what is a dense group?

What fraction of mock CGs are physically dense? Mamon 86: 40%

SAM	mock mpCGs
Bower et al. 06	36-44%
Croton et al. 06	37-41%
De Lucia & Blaizot 07	19-21%

20-40% of CGs selected in 2D with exact HCG criteria

McConnachie et al. 08: 35% of mpCGs = physically dense

What fraction of mock CGs are physically dense? Mamon 86:40%

SAM	mock mpCGs	mock mvCGs
Bower et al. 06	36-44%	73-78%
Croton et al. 06	37-41%	67-75%
De Lucia & Blaizot 07	19-21%	60-66%

20-40% of CGs selected in 2D with exact HCG criteria

McConnachie et al. 08: 35% of mpCGs = physically dense

60-80% of CGs selected in 2D+v with exact HCG criteria

What fraction of mock CGs are physically dense? Mamon 86: 40%

SAM	mock mpCGs	mock mvCGs	mock mvHCGs
Bower et al. 06	36-44%	73-78%	78-86%
Croton et al. 06	37-41%	67-75%	71-82%
De Lucia & Blaizot 07	19-21%	60-66%	64-72%

20-40% of CGs selected in 2D with exact HCG criteria

McConnachie et al. 08: 29% of mpCGs = physically dense

60-80% of CGs selected in 2D+v with exact HCG criteria

65–85% of CGs selected in 2D+v with HCG biases

Physically dense vs. chance alignments

Physically Dense CGs:

- smaller in projection
- higher surface brightness McConnachie et al. 08
- shorter "observed" crossing time:
- higher "observed" M/L: $R \sigma_v^2/(G L)$

Low velocity dispersion mock CGs

IF chance alignments have lower σ_v : with De Lucia & Blaizot model explain spiral richness, low X-rays, off FT

but IF low σ_v CGs slightly more likely to be Physically Dense: with Bower and Croton models most must then have recently formed low σ_v from

- low mass given starbursting light
- energy dissipation (dynamical friction)

Which SAM reproduces best observed HCGs?

Global properties: Croton et al. 06

Parameter correlations: De Lucia & Blaizot 07

Differences in SAM predictions

fraction of mpCGs = dense: 2x lower with De Lucia

projected sizes of mvCGs: Bower 1.6x lower than De Lucia

Croton et al. unable to produce mag-concordant mvCGs

only Croton et al. find $f(\mu)$ keeps increasing near SB threshold