A Simple Isolation Criterion Based on Redshift Space Mapping

Oded Spector, Noah Brosch Tel-Aviv University

Outline

- Research Project
- Isolation Criterion
- Sample
- Validation

The Project

Project

Criterion

Sample

Validation

Goal:

Understanding how galaxies evolve in isolation

- Method:
 - Selecting a sample of Isolated Galaxies (IGs)
 - Imaging in wide bands and ${\rm H}_{\alpha}$
 - Calculating star formation rates and evolutionary histories
 - Comparing to results of galaxies in denser environments

Observational Data

Project

Criterion

Sample

Validation

- The Wise Observatory (Hα and wide bands)
- ALFALFA (21cm)

• NED, SDSS, GALEX, TAUVEX, etc.

ALFALFA

Project

Criterion

Sample

Validation

- HI blind survey (at Arecibo)
- Sky Area: 7000 deg²
- Redshift: up to 17000 km/s
- Lower detection limit: $10^{7.5}$ M $_{\odot}$
- Location Accuracy: ~0.1'

Selecting the Sample

Project

Criterion

Sample

Validation

• Redshift space based search (Visual + HI)

- Advantages: simple, 3D
- Difficulties:
 - Incomplete redshift databases
 - Peculiar velocities
- Search criterion:
 - No neighbor within 3 Mpc·h⁻¹ in redshift space
 - 2000 < c·z < 7000 km·s⁻¹

The Sample

Project

Criterion

Sample

Validation

• Search Regions:

	RA (J2000)	Dec (J2000)	C·Z [km/s]
Spring	7:30 to 16:30	+4° to +16°	2000 to 7000
Autumn	22:00 to 03:00	+24° to +28°	2000 to 7000

- Spring: 27 IGs out of 2826 (~1.0%)
 - ALFALFA eliminates 9 of these!
- Autumn: 6 IGs out of 244 (~2%)

Example - UGC 12123

Project

Criterion

Sample

Validation

Images of UGC 12123 in filters U, B, V, R, H_{α} (line and continuum) and "Net H_{α}" (line only). North is up, East is left.

Example - UGC 12123

Example - UGC 12123

	Validation
Project Criterion Sample	 Using a mock universe: Database with all "true data" (r, v, L)
Validation	

Box 160 Simulation (Hoffman & Gottlöber) **Project** Constrained simulation of the local universe: Criterion Sample • $L_{box} = 160 \text{ Mpc} \cdot h^{-1}$ Validation • $N_p = 1024^3$ • $M_p = 2.54 \cdot 10^8 M_{\odot} \cdot h^{-1}$ • Model: Λ CDM (WMAP3) • The most important large structures can be observed in this simulation: Virgo, Coma, Local Supercluster, etc.

Validation

Project

Criterion

Sample

Validation

• Using a mock universe:

- Database with all "true data" (r, v, L)
- Creating a copy with "observable" data:
 - RA, dec, m
 - $c \cdot z$ only for some of the galaxies

Diluting Box 160 data

Validation

Project

Criterion

Sample

Validation

• Using a mock universe:

- Database with all "true data" (r, v, L)
- Creating a copy with "observable" data:
 - RA, dec, m
 - c·z only for some of the galaxies
- Using the search criterion to obtaining a "mock sample" based on the "observable" data.
- Analyzing the "true neighborhood" using the "true data".

Conclusions

- Redshift surveys provide enough information for choosing IG samples based on 3D mapping.
- The simple isolation criterion (having no known neighbors within < 3 Mpc·h⁻¹) provides a sample of galaxies in the low density regions of the local universe.
- ALFALFA's data is extremely useful in eliminating false positives from the sample due to the redshift data of low luminosity galaxies with high HI masses.

Questions ?

Buen Provecho

Bon Appétit