
Starbursts in isolated galaxies

Motivation
Model
Results

IMF
spontaneous and induced SF
ISM model

(Christian Theis, Vienna)

in collaboration with Joachim Köppen (Strasbourg)



Motivation
first analysis based on one-zone models 
(e.g. Ikeuchi & Tomita 1983; Ikeuchi, Habe & Tanaka 1984; Scalo & Struck-Marcell
1984, 1986, 1987; Li & Ikeuchi 1989; Köppen, Theis & Hensler 1995, 1997; 
Hirashita 2000, Quillen & Bland-Hawthorn 2008):

Strong self-regulation
(for immediate feedback)



One-zone model without dynamics
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Evolution of a box model

One-zone model:
self-regulated SF
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Involved timescales:

⇒ thermal equilibrium is 
quickly established
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Problems for creating global star
bursts

Stability problem:
negative feedback makes many one-zone
models very stable

Coherence problem:
unstable (small) region will not result in a 
global burst

but:
Dynamics is missing in most models
Different galactic regions are not coupled



Example from a 3D model

3D Nbody-SPH model for a disk-like dwarf galaxy
Stellar feedback is included
Burst period is related to the dynamical timescale

(Pelupessy, van der Werf & Icke 2004)

(Mg=2·108 M Ms=1.5·108 M Mhalo=15·109 M )



One-zone model - II: Adding dynamics
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+ description for mean
size RS of the baryonic
mass distribution

+ PdV term in energy eq.

⇒ Quantities like mass
density g=Mg / (4/3 π Rs

3)
depend not only on gas
consumption and stellar
feedback, but also on 
dynamical state (Rs).



One-zone model - II: Adding dynamics
Dynamical evolution approximated by motion of a shell 
in a static dark matter potential:

1. Gravity: 

2. Pressure:

3. Angular momentum:

4. Friction:
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An example...
Star formation: non-linear Schmidt law (n=1.5) 

with thermal feedback term
Dissipation: radiative cooling
Mgas=2·109 MŸ within Rini=8 kpc
Dark matter: r0=8 kpc, fbar~10%
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An example...
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Model with different IMF

(Theis & Köppen 2009)

variation of the mass fraction of massive stars by a factor of 2



A temporally variable IMF
Weidner/Kroupa-IMF (2005, 2006):

IMF depends on global SFR
Influence on stellar heating (number of massive stars; 
upper mass limit)
correction factor fWK(y):

/2
11 0.8 0( ) with 3 log[ / (M yr )]WK 00.2

for
x

x

e xf xxe

−
−⎧ − ≥⎪Ψ = ≡ + Ψ⎨ <⎪⎩



Model with WK-type IMF

• SFR almost independent of IMF
self-regulation is very efficient!

• however:  chemical history might vary
strongly

(Theis & Köppen 2009)



Induced Star Formation

extension of stellar birth function:

new term: SN induced star formation due 
to material swept up in SN shells

fi: volume fraction of galaxy covered by SN 
shells, estimated by
hi:  efficiency factor for SF in shell (~0.1)
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Induced Star Formation



Induced Star Formation

(Theis & Köppen 2009)



Models with dissipation by 
inelastic cloud-cloud collisions

If ISM is strongly fragmented, kinetic energy 
(deposed in random motion) is dissipated by 
inelastic clump-clump collisions
Dissipation rate scales formally similar to 
radiative cooling:  de/dt=Cdissg2~e/tcoll

Collisional timescale:
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Dissipation by cloud collisions
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Summary
A) Dissipation by radiation:

Self-regulated evolution
Star formation follows dynamics: 

(initial transitory) virial oscillations
Global dynamics independent of SF

Behaviour very robust w.r.t. SF recipe
(parametrization, type of SF, IMF, heating…)

B) Additional burst type for long dissipational
timescales ( dependence on nature of
dissipation in ISM):

long quiescent phases possible
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