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Motivation

m first analysis based on one-zone models

(e.g. Ikeuchi & Tomita 1983; lkeuchi, Habe & Tanaka 1984; Scalo & Struck-Marcell
1984, 1986, 1987; Li & Ikeuchi 1989; Koppen, Theis & Hensler 1995, 1997,
Hirashita 2000, Quillen & Bland-Hawthorn 2008):

Strong self-regulation

(for immediate feedback)



One-zone model without dynamics

cooling stellar feedback

star formation

1. gas: d_g:_\y(g,'r)ﬂ]i
dt T

2. massive stars: gs CW(g,T)-2>
T

at

de
3. energy of the ISM: a:h(g)s—ng(T)

¥(g,T)=C g"f(T) with T(T)=exp(-T/T,)




One-zone model:
self-reqgulated SF

Evolution of a box model

Involved timescales:
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= thermal equilibrium is
quickly established

(Koppen, Theis & Hensler 1995)



Problems for creating global star
bursts

Stability problem:

negative feedback makes many one-zone
models very stable

Coherence problem:

unstable (small) region will not result in a
global burst

m but:

m  Dynamics is missing in most models
m Different galactic regions are not coupled




Example from a 3D model
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(Pelupessy, van der Werf & Icke 2004)

s 3D Nbody-SPH model for a disk-like dwarf galaxy
m Stellar feedback is included
m Burst period is related to the dynamical timescale




One-zone model - Il: Adding dynamics

()

cooling

feedback

star formation

1. gas: :_\{I(g,T)H]E
T

. ds
2. massive stars: —

S
dt :gT(g,T)—;

de .
o h(g)s—g°A(T)

3. energy of the ISM:

¥(g,T)=C,g"f(T)

+ description for mean
size Rq of the baryonic
mass distribution

+ PdV term in energy eq.

= Quantities like mass
density g=M,/ (4/3 ™ RS?)
depend not only on gas
consumption and stellar
feedback, but also on
dynamical state (R,).



One-zone model - Il: Adding dynamics

Dynamical evolution approximated by motion of a shell
In a static dark matter potential:

dtljs = Gravity + Pressure + Ang. Mom. + Friction

: dod M
1. Gravity: (DM halo: Burkert 1995)

2. Pressure: —C, id_P = +l

g dr R

S

.2 . =
3. Angular momentum: + J3 — (Ci J;“ax)z
R Rs

.. V )
4. Friction: ——24 with Tric = Cric - T (r=1)
z-fric




An example...

m Star formation: non-linear Schmidt law (n=1.5)
with thermal feedback term

= Dissipation: radiative cooling
= M,=2-10° M, within R;,;=8 kpc
m Dark matter: r,=8 kpc, f,,,~10%




An example...
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An example...
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Model with different IMF

variation of the mass fraction of massive stars by a factor of 2
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(Theis & Koppen 2009)



A temporally variable IMF

= Weidner/Kroupa-IMF (2005, 20006):
= IMF depends on global SFR

= Influence on stellar heating (hnumber of massive stars;
upper mass limit)

m correction factor f«(¥):



Model with WK-type IMF

£=0.12 (ref)
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(Theis & Koppen 2009)



Induced Star Formation

m extension of stellar birth function:
¥, (9,T;s,R) = LPb,sp(giT) +%¥,..(9,8R)

m hew term: SN induced star formation due
to material swept up in SN shells

\Pb,in (91 S, R) Eﬂ. fi (Rsh (81 g)1 R)

4

= f;: volume fraction of galaxy covered by SN
shells, estimated by  f(R,(s.9), R) =1-e ®'®

m 77, efficiency factor for SF in shell (~0.1)
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Induced Star Formation
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(Theis & Koppen 2009)




Models with dissipation by
Inelastic cloud-cloud collisions

m If ISM is strongly fragmented, kinetic energy
(deposed in random motion) is dissipated by
iInelastic clump-clump collisions

m Dissipation rate scales formally similar to
radiative cooling: de/dt=C,..g°~e/r,,

m Collisional timescale:

1 M -1 R 712 M R -1/2
Tog = ~0.97| —— : Dl'\g( 5) Gyr
n A,V 10°M, okpc 10 M,

cl rrel




Dissipation by cloud collisions

modelQ32 (Mg=4.5 107 Mg rg=8 kpe): cloud—cloud collisions
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Summary

m A) Dissipation by radiation:

= Self-regulated evolution
= Star formation follows dynamics:
=> (initial transitory) virial oscillations
= Global dynamics independent of SF

= Behaviour very robust w.r.t. SF recipe
(parametrization, type of SF, IMF, heating...)

m B) Additional burst type for long dissipational
timescales (= dependence on nature of
dissipation in ISM):

= |long quiescent phases possible
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