
dispel4py: An Agile Framework for Data-Intensive eScience

Rosa Filgueira∗, Amrey Krause†,
Malcolm Atkinson∗, Iraklis Klampanos∗,

Alessandro Spinuso‡, Susana Sanchez-Exposito§

∗ School of Informatics, University of Edinburgh, Edinburgh EH9 3JZ, UK
† EPCC, University of Edinburgh, Edinburgh EH9 3JZ, UK

‡KNMI, Koninklijk Nederlands Meteorologisch Instituut, De Bilt 3731 GA, NL
§Instituto de Astrofísica de Andalucía (CSIC) , Granada E-1800, Spain

Abstract—We present dispel4py a versatile data-intensive
kit presented as a standard Python library. It empowers
scientists to experiment and test ideas using their familiar
rapid-prototyping environment. It delivers mappings to diverse
computing infrastructures, including cloud technologies, HPC
architectures and specialised data-intensive machines, to move
seamlessly into production with large-scale data loads. The
mappings are fully automated, so that the encoded data
analyses and data handling are completely unchanged. The
underpinning model is lightweight composition of fine-grained
operations on data, coupled together by data streams that
use the lowest cost technology available. These fine-grained
workflows are locally interpreted during development and
mapped to multiple nodes and systems such as MPI and Storm
for production.

We explain why such an approach is becoming more essential
in order that data-driven research can innovate rapidly and
exploit the growing wealth of data while adapting to current
technical trends. We show how provenance management is
provided to improve understanding and reproducibility, and
how a registry supports consistency and sharing. Three appli-
cation domains are reported and measurements on multiple
infrastructures show the optimisations achieved. Finally we
present the next steps to achieve scalability and performance.

Keywords-eSciences workflows, data intensive application,
run time analysis, distributed systems, python frameworks.

I. INTRODUCTION

Recent years have seen a spectacular growth in scientific
data, that must be shared, processed and managed on dif-
ferent distributed computational infrastructures (DCI). Major
contributors to this phenomenal data deluge include new av-
enues of research and experiments facilitated by e-Science,
which enables global inter-disciplinary collaborations. These
share resources to solve the new problems of science, engi-
neering and humanities. Such e-Science data emanates from
different areas, such as sensors, satellites, high-performance
computer simulations and already exceeds tens of petabytes
per year. A rate that will increase significantly over the
next decade. Performance of applications using these data is
sensitive to data movement operations between distributed
resources, such as large transfers data between the stor-
age and compute systems, communication among workflow
components executed on different DCI, intensive internal

communication in parallel applications, or data streaming
between locations. On the other hand, scientific communities
(e.g. seismologists or astronomers) already access a wide
variety of computing resources, and have computational
problems that need HPC architectures. However, success
with these technologies depends on additional mechanisms
that are not straightforward for non-experts: for example
MPI or OpenMP) should be used depending on the memory
architecture. This technical detail distracts from the domain
goals and limits progress, e.g. by requiring code changes for
each target DCI .

To empower domain scientists to invent and improve
their data-science methods they need to be able to work
independently of the details of target infrastructures, to
experiment freely in their development environment and to
move to production scales fluently. They need to be able to
collaborate, sharing both data and scientific methods with
each other. Providing scientific communities with easy-to-
use tools to support such activities is vital for eScience.

This paper presents a new tool kit for scientists, called
dispel4py, to enable them to rapidly prototype their
distributed data-intensive applications. It provides an enact-
ment engine that maps and deploys abstract workflows onto
multiple parallel platforms, including Apache Storm, MPI
and shared-memory multi-core architectures. dispel4py
comes with basic data provenance functionality allowing
for monitoring, as well as with an information registry that
is accessed transparently to achieve collaboration between
users and consistency between runs.

e-Science applications which depend on data-intensive
computing already benefit from dispel4py, when con-
sistency between runs, execution on multiple platforms, as
well as sharing, collaboration and replicability of results are
required. However, to increase the scalability of applications
we are designing and prototyping a run-time adaptive com-
pression mechanism. dispel4py has been primarily used
in e-Science contexts, most notably in Seismology. Recently
it has been used in another two domains: Astrophysics and
Social Computing.

This paper is structured as follows. Section II presents
background. Section III defines the dispel4py concepts.

Section IV discusses dispel4py features. Section V
presents three eScience domains, Seismology, Astrophysics
and Social Computing, with dispel4py workflows. Sec-
tion VI introduces the design for the dispel4py compres-
sion strategy. We conclude with a summary of achievements
and outline some future work.

II. BACKGROUND AND RELATED WORK

There are many scientific workflow systems, including
Taverna, Kepler [1], Pegasus [2], Triana [3], Swift [4],
Trident [5], Meandre [6], and Bobolang [7]. They focus
primarily on managing dataflow and computations, and
generally use a bottom-up approach to describe experiments.
Important defining features include whether they have a
GUI, are stream- or file-based, and whether or not they use
an automatic mapping onto different enactment platforms.
In most cases, they reflect underlying technical details;
consequently it is less easy for data-scientists to take full
responsibility for their methods.

Among the most popular of these are Taverna, Kepler, and
Pegasus. Taverna offers graphical interfaces, well-developed
catalogues of composable services particularly for the life
sciences. It is open source and is supported by a large com-
munity. Workflow sharing is arranged via myExperiment [8].
It can be operated via a range of environments, including the
Taverna workbench, the command line, a remote execution
server, and the online workflow designer OnlineHPC.

Kepler is a streaming GUI-based system, developed pri-
marily for geosciences, environmental sciences and bioinfor-
matics workflows. It separates the computation model from
the workflow structure so that different computation models
can fit the same workflow graph.

Pegasus uses Chimera’s virtual data language [9] and is
not GUI-based. Instead, it is a file-based framework for
mapping complex scientific workflows onto remote systems.
Pegasus supports an input DAX workflow description, which
can be generated using a Python or Java API, or a script.
Even with its Wings front end1, a semantically rich workflow
system used to create and validate workflows, it does not
support immediate experiment or users working undistracted
by technical detail.

Bobolang, a relative new workflow system based on data
streaming, is linguistically based on C++ and focuses on
automatic parallelisation [7]. It supports multiple inputs and
outputs, meaning that a single node can have as many inputs
or outputs as a user requires. Currently, it does not support
automatic mapping to different DCIs.

Mechanisms to improve sharing and reuse of workflows
have proved important in the task-oriented context, e.g.
myExperiment [8] and Wf4Ever [10]. It is unclear whether
these will need extension to accommodate data-streaming
workflows [11], as the scale of data handled precludes simple

1Wings: wings-workflows.org

bundling of data with workflows to ensure reproducibility as
in computationally intensive workflows [12].

III. DISPEL4PY CONCEPTS

The dispel4py data-streaming workflow library is part of
a greater vision for the future of formalising and automat-
ing both data-intensive and computation-intensive scientific
methods. We posit that workflow tools and languages will
play increasingly significant roles due to their inherent
modularity, user-friendly properties, accommodation of the
full range from rapid prototyping to optimised production,
and intuitive visualisation properties – graphs appear to be a
natural way to visualise logical compositions of processing
steps. We are just experiencing a critical transition from an
era when performance issues dominated to an era when these
can be dealt with automatically so that domain scientists
can experiment with and take full responsibility for the
encoding of their methods. We adopt the abstract model
of data streaming between operations as it is versatile and
easily understood. It will have a significant impact on the
way scientists think and carry out their data-analysis tasks.
The low overhead of the interconnections make it suitable
for immediate interpretation and for composing small as
will as large steps, yet data streams can be expanded to
arbitrary capacity and the graphs are easily parallelised.
Consequently, dispel4py allows scientists to express their
requirements in abstractions closer to their needs and further
from implementation and infrastructural details.

The Dispel language [13] had these goals. dispel4py
builds on this but aligns more closely with the requirements
of scientists and infrastructure providers.

We now present a summary of the main dispel4py
concepts and terminology:

• A processing element (PE) is a computational activity,
corresponding to a step in a scientific method or a data-
transforming operator. They encapsulate an algorithm
or a service. PEs are the basic computational blocks
of any dispel4py workflow at an abstract level.
They are instantiated as nodes in a workflow graph.
dispel4py offers a variety of PEs: GenericPE ,
IterativePE, ConsumerPE, SimpleFunctionPE and cre-
ate_iterative_chain. The primary differences between
them, are the number of inputs that they accept and
how users express their computational activities. For
example, GenericPE accepts n number of inputs and
outputs, while IterativePE declares only one input and
one output and ConsumerPE has one input and no
outputs. More information is available at2.

• An instance is the executable copy of a PE that will
consume data units from its input ports and emit data
units from its output ports transformed by its algorithm.

• A connection streams data units from an output of a PE
instance to one or more input ports of other instances.

2http://dispel4py.org/processing_elements.html#pe-base-classes

The rate of data consumption and production depends
on the behaviour of the source and destination PEs.

• A composite processing element is a PE that wraps
a dispel4py sub-workflow. Composite processing
elements allow for synthesis of increasingly com-
plex workflows by composing previously defined sub-
workflows.

• A partition is a number of PEs wrapped together and
executed within the same process. It is used to explicitly
co-locate PEs that have relatively low CPU and RAM
demands, but high data-flows between them.

• A graph defines the ways in which PEs are connected
and hence the paths taken by data, i.e. the topology
of the workflow. There are no limitations on the type
of graphs that can be designed with dispel4py.
Figure 1 is an example graph involving four PEs.
FilterTweet receives the stream tweet and filter_Tweet
takes them as inputs. It emits the tweets’ hash_tags and
language as outputs, which are sent to different PEs:
CounterHashTag andCounterLanguage, which count
the number of different hash_tags, and languages
respectively. The outputs of those PEs are then merged
in StatisticsPE, which displays which are the top five
most popular hash_tags and whichlanguage is most
used. More examples can be found in the dispel4py
documentation3.

• A grouping specifies for an input connection the com-
munication pattern between PEs. There are four pat-
terns available: shuffle, group_by, one_to_all and
all_to_one. Each pattern arranges that there are a
set of receiving PE instances. The shuffle grouping
randomly distributes data units to the instances, whereas
group_by ensures that each value that occurs in the
specified elements of each data unit is received by the
same instance, so that an instance receives all of the
data units with a particular value. one_to_all means
that all PE instances send copies of their output data
to all the connected instances and all_to_one means
that all data is received by a single instance. In the
mining_tweets dispel4py workflow, CounterHash-
Tag and CounterLanguage apply a grouping_by based
upon the field hash_tag and language respectively, and
Statistics applies an all_to_one grouping.

To construct dispel4py workflows, users only have to use
available PEs from the dispel4py libraries and registry,
or implement PEs (in Python) if they require new ones.
They connect them as they desire in graphs. We show the
code for creating the mining_tweets dispel4py workflow
represented in Figure 1. In the code listing below, we assume
that the logic within PEs is already implemented.

Listing 1. An example Mining_Tweets dispel4py graph.

3http://dispel4py.org/api/dispel4py.examples.graph_testing.html

from d i s p e l 4 p y . workf low_graph i m p o r t WorkflowGraph

pe1 = F i l t e r T w e e t ()
pe2 = CounterHashTag ()
pe3 = Counte rLanguage ()
pe4 = S t a t i s t i c s ()

g raph = WorkflowGraph ()
g raph . c o n n e c t (pe1 , ’ ha sh_ t ag ’ , pe2 , ’ i n p u t ’)
g raph . c o n n e c t (pe1 , ’ l anguage , pe3 , ’ i n p u t ’)
g raph . c o n n e c t (pe2 , ’ h a s h _ t a g _ c o u n t ’ , pe4 , ’ i n p u t 1 ’)
g raph . c o n n e c t (pe3 , ’ l a n g u a g e _ c o u n t ’ , pe4 , ’ i n p u t 2 ’)

counter
HashTag

filter
Tweet

counter
Language

stastistics

stream tweet

hash_tag

langugage

input

input

input1

input2

hash_tag_count

language_count

Figure 1. mining_tweets dispel4py workflow.

IV. DISPEL4PY FEATURES

We will describe three of dispel4py’s features that allow
users to automatically run their workflows with different
enactment systems (mappings), to monitor dataflow (prove-
nance) at run-time, and to share and re-use their workflows
via the (registry).
A. Mappings

One of dispel4py’s strengths is that it allows the con-
struction of workflows without knowledge of the hardware
or middleware context in which they will be executed.
Users focus on designing their workflows at a logical level,
describing actions, input and output streams, and how they
are connected. When their Python script is run this graph is
constructed, and then it is either locally interpreted or the
dispel4py system maps the graph to a selected enactment
platform. Since the abstract workflows are independent from
the underlying communication mechanism they are portable
among different computing resources without any migration
cost imposed on users, i.e. they do not make any changes
to run in a different context.

The dispel4py system currently implements mappings
for Apache Storm, MPI and Multiprocessing DCIs, as
well as a Sequential mapping for development and small
applications. Descriptions of these mappings follow.

1) Apache Storm: The dispel4py system maps to
Storm by translating its graph description to a Storm topol-
ogy. As dispel4py allows its users to define data types
for each PE in a workflow graph, types are deduced and
propagated from the data sources throughout the graph when
the topology is created. Each Python PE is mapped to either

a Storm bolt or spout, depending on whether the PE has
inputs (a bolt), i.e. is an internal stage, or is a data source
(a spout), i.e. is a point where data flows into the graph from
external sources. The data streams in the dispel4py graph
are mapped to Storm streams. The dispel4py PEs may
declare how a data stream is partitioned across processing
instances. By default these instructions map directly to built-
in Storm stream groupings. The source code of all mappings
can be found at4.

There are two execution modes for Storm: a topology
can be executed locally using a multi-threaded framework
(development and testing), or it can be submitted to a pro-
duction cluster. The user chooses the mode when executing a
dispel4py graph in Storm. Both modes require the Storm
package on the client machine.

2) MPI: MPI is a standard, portable message-passing
system for parallel programming, whose goals are high
performance, scalability and portably [14]. For this map-
ping, dispel4py uses mpi4py5, which is a full-featured
Python binding for MPI based on the MPI-2 standard. The
dispel4py system maps PEs to a collection of MPI
processes. Depending on the number of targeted processes,
which the user specifies when executing the mapping, mul-
tiple instances of each PE are created to make use of
all available processes. Input PEs, i.e. at the root of the
dispel4py graph, only ever execute in one instance to
avoid the generation of duplicate data blocks.

Data units to be shipped along streams are converted
into pickle-based Python objects and transferred using MPI
asynchronous calls. Groupings are mapped to communi-
cation patterns, which assign the destination of a stream
(e.g. shuffle grouping is mapped to a round-robin pattern,
for group-by the hash of the data block determines the
destination). The MPI mapping requires mpi4py and any
MPI interface, such as mpich6 or openmpi7.

3) Multiprocessing: The Python library multiprocessing
is a package that supports spawning subprocesses to lever-
age multicore shared-memory resources. It is available as
part of standard Python distributions on many platforms
without further dependencies, and hence is ideal for small
jobs on desktop machines. The Multiprocessing mapping of
dispel4py (also called multi) creates a pool of processes
and assigns each PE instance to its own process. Messages
are passed between PEs using multiprocessing.Queue ob-
jects. As in the MPI mapping, dispel4py maps PEs to a
collection of processes. Each PE instance reads from its own
private input queues on which its input blocks arrive. Each
data block triggers the execution of the process() method
which may or may not produce output blocks. Output from
a PE is distributed to the connected PEs depending on the

4https://github.com/dispel4py/dispel4py/
5http://mpi4py.scipy.org/
6http://www.mpich.org/
7http://www.open-mpi.org/

grouping pattern that the destination PE requests. The Com-
munication class manages distribution of data. The default
is ShuffleCommunication which implements a round-robin
pattern; the example below uses GroupByCommunication
to group output by specified attributes. The Multiprocessing
mapping allows partitioning of the graph to colocate PEs in
one process. Users can specify partitions of the graph and
the mapping distributes these across processes in the same
way as single PEs.

4) Sequential mode: The sequential mode (simple) is
a standalone mode that is ideal for testing workflows
during development. It executes a dispel4py graph in
sequence within a single process without optimisation. When
executing a dispel4py graph in sequential mode, the
dependencies of each PE are determined and the PEs in the
graph are executed in a depth-first fashion starting from the
roots of the graph (data sources). The source PEs process
a user-specified number of iterations. All data is processed
and messages are passed in-memory.
B. Registry

The modularity of workflow approaches, and in particular
the data-centric, fine-grained design of dispel4py, leads
to extensive re-usability. In dispel4py users can store,
share and reuse workflow entities, such as PEs and func-
tions, via the dispel4py information registry. The registry
implements a data schema able to describe dispel4py
entities in a form usable by the dispel4py enactment
engine. By using the registry, researchers can import their
own or third-party PE specifications, functions for inclusion
in their workflows.

To facilitate collaboration, the dispel4py registry in-
troduces workspaces, essentially containers of workflow
components, which are owned and managed by users and
user groups, and which can be isolated or shared, selectively
or wholly, at will. The registry adopts a packaging system for
grouping semantically related workflow components, in line
with dispel4py. Workflow components, such as PEs, are
then uniquely identifiable by their workspace, package and
name. Workspaces are designed as inheritable entities, such
that a workspace can be created by inheriting or cloning
another workspace, if permissions allow. Users can store
new components by interacting with the registry. Once set-
up, dispel4py is able to make use of components and
code stored in the registry transparently by overriding the
standard Python import keyword: the specified component
is fetched from the registry, if it is not present locally.

A prototype version of the information registry has been
developed and has been released as an open-source project8.
This is implemented in Django9, a Python-based Web
framework, and has a RESTful API. Figure 2 shows the
administrator UI for adding PE specifications via a web

8https://github.com/iaklampanos/dj-vercereg
9https://www.djangoproject.com

Figure 2. The administrator interface for the Django-built registry service.
Users can use this to make PE specifications available in dispel4py.

browser, and as the registry service is implemented as a Web-
based API, more user-friendly UIs can be implemented. The
registry backend is provided by a relational MySQL database
server. The adoption of Django and MySQL, allows for fast
prototyping, while achieving a performant solution, deploy-
able on thoroughly tested and reliable software, such as the
Apache Web Server. While the use of a relational database
fulfils the basic registration requirements of dispel4py,
we envisage extensions that make better use of the intrinsic
semantic relations between workflow components, types,
provenance information, etc., either as part of the core
implementations or as extensions that use external resources.

The current implementation allows for basic user and
group management, which in turn allows for the creation
and modification of workspaces. It also covers all core
dispel4py entities, such as PEs, functions, literals and
implementations. It does not yet contain resource descrip-
tions for middleware and hardware, nor does it contain
descriptions of data resources and products. Based on the
requirements of our current work, we intend to look into
these two extensions in the future, also taking into account
provenance, described in the following section, and optimi-
sation considerations.
C. Provenance Management

As for other workflow systems, dispel4py provides sup-
port for the production and collection of provenance infor-
mation. The provenance management consists of a compre-
hensive system which includes: extensible mechanisms for
provenance production, a web API and a visualisation tool.
The system is used in production in the field of solid-Earth
sciences. The design of the provenance system considered
the following requirements:

• Flexible metadata and Selectiveness: Users are con-
sidered as part of the archival process of their com-
putations. They have the best knowledge of the data

produced and therefore they need to be supported with
tools to describe it according to community and custom
terminology and interest [15].

• Runtime Analysis: The rapid availability of provenance
data may allow for the detection of scenarios that can’t
be foreseen when developing a scientific workflow.
For instance, errors, unexpected metadata values or
excessive execution time.

• Ease of Access: Streaming workflows can produce huge
quantities of provenance data with high I/O rates. As
Pauw observed [16], reducing the risk of technical and
cognitive overload is essential in order to use prove-
nance effectively. Interactive consumption by users is
the primary concern.

One of our challenges was to inject the functionalities
needed to support the Flexible metadata and Selectiveness
with minimal impact on the core dispel4py API. We
consider provenance as a modular and dynamically plug-
gable enrichment of the bare bone system, leaving a PE
developer to make the best use of it, with minimal effort
when she wants to. We take into account the potentially high
I/O rate of a streaming computation by having mechanisms
for a selective provenance activation, which may select,
for instance, a subgraph of a workflow or a section of
a stream, to achieve focused validation, also in real-time,
with a significantly reduced overhead [17]. Our approach
makes a clear distinction between three important phases: the
provenance production phase, its collection and eventually,
its storage. In Figure 3, we show how the instances of a
GenericPE, or its specialisation, organised in a dispel4py
subgraph, can be transformed to include in their base types
also the ProvenancePE type, which then allows them to
produce provenance data. We achieve this injection by
adopting dynamic polymorphism techniques, to assure that
provenance operations can be activated at runtime. This
extends the PE implementation at runtime, in such a way
that all of the logic needed to deal with extensive metadata
management and dependency tracking. The enhanced PEs
are connected to a ProvenanceRecorderPE, which have the
specific role of collecting and possibly analysing provenance
data. The implementation of the ProvenanceRecorderPEs
may change from case to case, in order to support a variety
of scenarios. For instance, a specific type of recorder could
comply to the requirements of the hosting DCI, which may
impose specific protocols on transfer operations to external
facilities, such as an external provenance store.

The recorders can be used for the Runtime Analysis of the
incoming lineage traces. This could have immediate effects
on the life-cycle of the workflow, besides triggering specific
actions on the intermediate data products of a PE. For
instance, rapid stage-out operations towards external systems
which might provide dedicated hardware, could better serve
tasks for data management, visualisation, etc. Usually, such

Figure 3. Provenance Injection: The GenericPE of a dispel4py
subgraph, are extended at runtime assuming the ProvenancePE type. These
are connected to instances of ProvenanceRecorderPE which reads, analyse
and activates the transfer of the provenance traces towards a centralised
catalogue, external to the DCI.

scenarios would require the implementation of ad hoc PEs.
Instead we include a number of common behaviours and
practices within our provenance data model to ensure these
are properly handled by the system automatically.

Substantial effort has been dedicated to Ease of access.
In Figure 4 we show a screenshot of the Provenance
Explorer GUI that allows different operations including:
workflow progress monitoring, searches over metadata, data
dependency navigation, data preview and download. The
latter can be achieved in interactive mode, via download
links, and in batch mode, thanks to the automatic generation
of bulk download scripts. This batch download feature is
actively used to combine search results with large down-
load operations, which are most likely to be performed on
institutional or campus clusters, which are better sized for
massive post processing tasks, rather then a user’s laptop.
The GUI is served by a web API which exposes a storage
backend developed with MongoDB 10. The choice of this
NoSQL technology has been motivated by the nature of
the data produced, which besides having an interconnected
structure also presents a very large quantity of metadata
terms which need to be flexible and efficiently indexed. After
some investigation of possible solutions MongoDB proved
the most reliable production quality system with support for
all of the access scenarios available through our Provenance
API specification. Last but not the least, we include in the
concept of Ease of access also the notion of portability. Our
API is capable of exporting the trace of a run in the W3C-
PROV JSON representation11, to facilitate interoperability
with third-party tools and, its adoption by institutional

10http://www.mongodb.org
11http://www.w3.org/Submission/2013/SUBM-prov-json-20130424/

read
Trace

trace
Prep

xCorr
write
Results

xCorr

Phase 1: composite PE
pipeline to prepare trace from a single seismometer

Phase 2

Cross Correlation

decim
de
trend

de
mean

re
move
resp

filter
calc
norm

white
calc
fft

product
Pairs

Figure 5. A simplified abstract workflow for seismic cross-correlation
using dispel4py

archives, for long-term data curation and preservation.

V. DISPEL4PY WORKFLOWS

The following subsections describe dispel4py workflows,
which are examples from three domains: Seismology, As-
trophysics and Social Computing. Using these we will
show how dispel4py enables scientists to describe data-
intensive applications using a familiar notation, and to
execute them in a scalable manner on a variety of platforms
without modifying their code.

A. Seismology: Seismic Noise Cross Correlation

Earthquakes and volcanic eruptions are sometimes preceded
or accompanied by changes in the geophysical properties
of the Earth, such as wave velocities or event rates. The
development of reliable risk assessment methods for these
hazards requires real-time analysis of seismic data and truly
prospective forecasting and testing to reduce bias. However,
potential techniques, including seismic interferometry and
earthquake “repeater” analysis, require a large number of
waveform cross-correlations, which is computationally in-
tensive, and is particularly challenging in real-time. With
dispel4py we have developed the Seismic Ambient Noise
Cross-Correlation workflow (also called the xcorr workflow)
as part of the VERCE12 project [18], which preprocesses and
cross-correlates traces from several stations in real-time. The
xcorr workflow consists of two main phases:

• Phase 1– Preprocess: Each continuous time series from
a given seismic station (called a trace), is subject to
a series of treatments. The processing of each trace
is independent from other traces, making this phase
“embarrassingly” parallel (complexity O(n), where n
is the number of stations).

• Phase 2 – Cross-Correlation: Pairs all of the stations
and calculates the cross-correlation for each pair (com-
plexity O(n2)).

Figure 5 shows the dispel4py xcorr workflow, which has
five PEs. Note that the tracePrep PE is a compositePE,
where data preparation takes place. Each of those PEs, from
decim to calc_fft, performs processing on the data stream.
The xcorr workflow was initially tested on a local machine
using a small number of stations as input data. Later, it
was executed and evaluated on different parallel platforms

12http://www.verce.eu

Figure 4. Provenance Explorer GUI.

(described at Section V-D and summarised in Table IV)
automatically, scaling up by using using the parallel map-
pings of dispel4py to 1000 stations as input data (150
MB) performing 499,500 cross-correlations (39GB) without
modifying the code.

Table I
MEASURES (SECONDS) FOR 1000 STATIONS ON FOUR DCIS WITH THE

MAXIMUM NUMBER OF CORES AVAILABLE

Mode Terracorrelator Amazon
EC2

EDIM1 SuperMuc

MPI 3066.22 16862.73 38656.94 1093.16
multi 3143.77
Storm 27898.89 120077.123

The results (see Table I) demonstrate that dispel4py
can be applied to diverse DCI targets and adapt to variations
among them. However, the xcorr performance depends on
the DCI selected. For example, the best results in terms
of performance were achieved on the SuperMuc machine
with MPI followed by the Terracorrelator machine with
MPI and multi mappings. The Storm mapping proved to
be the least suitable in this case. Yet it is the best mapping
in terms of fault-tolerance for any case and DCI, as Storm
delivers automatic fault recovery and reliability. It may be
those features that make it the slowest mapping. See [19]
for further measurements.
B. Astrophysics: Internal Extinction of Galaxies

The Virtual Observatory (VO) is a network of tools and
services implementing the standards published by the In-
ternational Virtual Observatory Alliance (IVOA)13 to pro-
vide transparent access to multiple archives of astronomical
data. VO services are used in Astronomy for data sharing
and serve as the main data access point for astronomical
workflows in many cases. This is the case of the workflow
presented here, which calculates the Internal Extinction of
the Galaxies from the AMIGA catalogue14. This property

13http://www.ivoa.es
14http://amiga.iaa.es

represents the dust extinction within the galaxies and is a
correction coefficient needed to calculate the optical lumi-
nosity of a galaxy. The implementation of this workflow
(also called int_ext workflow) with dispel4py shows
that it can use VO services, as a first step to supporting
more complex workflows in this field.

Figure 6 shows the dispel4py int_ext workflow with
four PEs. The first PE reads an input file (coordinates.txt
size 19KB) that contains the right ascension (Ra) and
declination (Dec) values for 1051 galaxies. The second PE
queries a VO service for each galaxy in the input file using
the Ra and Dec values. The results of these queries are
filtered by filterColumns PE, which selects only the values
that correspond to the morphological type (Mtype) and the
apparent flattening (logr25) features of the galaxies. Their
internal extinction is calculated by the internalExtinction PE.

read
RaDec

getVO
Table

filter
Columns

internal
Extinction

Figure 6. Workflow for calculating the internal extinction of galaxies using
dispel4py

The int_ext workflow has also been implemented using
Taverna, which, as well as the VO service query and
the python script, includes two services belonging to the
Astrotaverna plugin [20]15 to manage the data format of
VOTables.

Initially, we compared the time-to-complete for both im-
plementations (Taverna vs dispel4py), performing a set
of executions using the same desktop machine, with 4 GB
RAM, an Intel Core 2 Duo 2.66GHz processor, and ensuring
the same network conditions, checking that the VO service
is running, and executing them in the same time slot. The
number of jobs executed concurrently was set to 10 in the
Taverna workflow, since after several tests, we verified this
was its optimal configuration. dispel4py was configured

15http://myexperiment.org/workflows/2920.html

Table II
ELAPSED TIMES (SECONDS) FOR 1050 GALAXIES ON TWO DCIS WITH

THE MAXIMUM NUMBER OF CORES AVAILABLE

Mode Terracorrelator EDIM1
MPI 31.60 96.12
multi 14.50 101.2
Storm 30.2

to use the multi mapping and 4 processes. The difference in
elapsed time is considerable. While the Taverna execution
takes approximately 9.5 minutes, dispel4py takes around
100 seconds.

Further evaluations were performed using the Terra-
correlator and EDIM1 DCIs, and the results show (see
Table II) that the lowest elapsed time for this workflow
was achieved using the multi mapping in Terracorrelator,
followed by Storm on EDIM1. For those evaluations we
used the maximum number of cores available in each DCI
(see Table IV). The performance differences for the MPI and
multi mappings between Terracorrelator and EDIM are due
to the number and features of the cores available in each
DCI. We used 14 cores for the MPI mapping and 4 cores
for the multi mapping on EDIM1, and 32 cores for both
mappings on the Terracorrelator.

C. Social Computing: Twitter Sentiment Analysis

With over 500 million tweets per day16 and 240 million ac-
tive users who post opinions about people, events, products
or services, Twitter has become an interesting resource for
sentiment analysis [21]. In this case study, we investigate
the benefits of dispel4py for analysing Twitter data by
implementing a basic Sentiment Analysis workflow, called
sentiment. dispel4py has been specifically designed
for implementing streaming and data-intensive workflows,
which fits the data stream model followed by Twitter.
The aim of sentiment analysis (also referred to as opinion
mining) is to determine the attitude of the author with respect
to the subject of the text, which is typically quantified in a
polarity: positive, negative or neutral.

We focus on how dispel4py manages the frequency
of tweets for performing two basic sentiment analyses by
using the lexical approach and by applying the AFINN
and SentiWordNet lexicons [22]. AFINN [23] is a dataset
of 2477 English words and phrases that are frequently
used in microbbloging services and each word is associated
with an integer between minus five (negative) to plus five
(positive). SentiWordNet (SWN3) [24]17 is a fine-grained,
exhaustive lexicon with 155,287 English words and 117,659
synsets, which are sets of synonyms that represent cognitive
synonyms. It distinguishes between nouns, verbs, adjectives
and adverbs, and each synset is automatically annotated
according to positivity, negativity and neutrality.
The original code used for building the sentiment workflow

16http://www.internetlivestats.com/twitter-statistics/
17http://sentiwordnet.isti.cnr.it/

Table III
MEASURES (SECONDS) FOR 126,826 TWEETS ON THREE DCIS WITH

THE MAXIMUM NUMBER OF CORES AVAILABLE

Mode Terracorrelator EDIM1 SuperMUC
MPI 925.04 32396.04 2057.59
multi 971.04 3954.63

can be found at18. Figure 7 shows the sentiment workflow,
which first scans the tweets preprocessing the words they
contain, and then classifies each tweet based on the total
counts for positive and negative words. As the sentiment
workflow applies two analyses, different preprocessing and
classification tasks need to be performed. To classify each
tweet with the AFINN lexicon (see Phase 1a in Figure 7),
the sentimentAFINN PE tokenises each tweet “text” word,
and then a very rudimentary sentiment score for the tweet
is calculated by adding the score of each word. After
determining the sentiments of all tweets, they are sent to the
findState PE, which searches the US state from which the
tweet originated, and discards tweets which are not sent from
the US. The HappyState PE applies a grouping by based on
the state and aggregates the sentiment scores of tweets from
the same state, which are sent to the top3Happiest PE. This
PE applies all-to-one grouping and determines which are the
top three happiest states.

The sentiment workflow also calculates tweet sentiment
in parallel using the SWN3 lexicon. The tokenizationWD
PE is a composite PE, where tweet tokenisation and tagging
takes place (see Phase 1b in Figure 7): the tokenTweet
PE splits the tweet text into tokens, the POSTagged PE
produces a part-of-speech (POS) tag as an annotation based
on the role of each word (e.g. noun, verb, adverb) and
the wordnetDef PE determines the meaning of each word
by selecting the synset that best represents the word in its
context. After pre-processing each tweet, the second phase of
the analysis is performed by the sentiment SWN3 composite
PE (see Phase 2b in Figure 7): the SWN3 Interpretation PE
searches the sentiment score associated with each synset in
the SWN3 lexicon, the sentimentOrientation PE gets the
positives, negatives and average scores of each term found
in a tweet and the classifySWN3Tweet PE determines the
sentiment of the tweet. After the classification, the same
procedure as before is applied to each tweet, to know which
are the three happiest states.

With dispel4py we could run the sentiment work-
flow for computing the top three “happiest” US states and
the sentiment analysis results as the tweets are produced.
However, to study the performance of the workflow under
different DCIs and mappings, 126,826 tweets (500MB) were
downloaded into a file, and used as a test set for all the
experiments. For this reason, the first PE, readTweets PE,
reads each tweet from the file, and streams them out.

The results shown in Table III demonstrate that

18https://github.com/linkTDP/BigDataAnalysis_TweetSentiment

read
Tweets

sentiment
AFINN

tokenization
WD

find
State

top
3

Happiest

sentiment
SWN3

token
Tweet

POS
Tagged

wordnet
Def

SWN3
Interpret
ation

sent
Orientati

on

classify
SWN3
Tweet

token
Tweet

classify
AFINN
Tweet

happy
State

Phase 1 b: composite PE
Preprocess the tweet

Phase 2 b: composite PE
Classify the tweet with SWN3

Phase 1 a: composite PE
Preprocess and classify

with AFINN

Grouping-by
state

Grouping
all-to-one

find
State

top
3

Happiest

happy
State

Grouping-by
state

Grouping
all-to-one

Figure 7. Workflow for calculating Twitter sentiment analysis and the top
five happiest U.S. states using dispel4py.

dispel4py is able to map to diverse DCIs and enactment
systems, adapting automatically to their variations, and show
that the performance depends on the DCI selected and
that the same use case can run faster or slower depending
on the selection of DCI and dispel4py mapping made.
In future work, we will automate those choices, enabling
dispel4py to choose the best DCI and mapping.
D. Evaluation Platforms: DCI features

Four platforms have been used for our experiments: Terra-
correlator, the Super-MUC cluster (LRZ), Amazon EC2, and
the Edinburgh Data-Intensive Machine (EDIM1). These are
described below and summarised in Table IV.

The Terracorrelator19 is configured for massive data in-
gest in the environmental sciences at the University of
Edinburgh. The machine has four nodes, each with 32 cores.
Two nodes are Dell R910 servers with 4 Intel Xeon E7-4830
8 processors, each with 2TB RAM, 12TB SAS storage and
8Gbps fibre-channel to storage arrays. We used one 32-core
node for our measurements.

Super-MUC20 is a supercomputer at the Leibniz Super-
computing Centre (LRZ) in Munich, with 155,656 processor
cores in 9,400 nodes. Super-MUC is based on the Intel Xeon
architecture consisting of 18 Thin Node Islands and one Fat
Node Island. We used 16 Thin (Sandy Bridge) Nodes, each
with 16 cores and 32 GB of memory, for the measurements.

On the Amazon EC2 the Storm deployment used an
18-worker node setup. We chose Amazon’s T2.medium
instances21, provisioned with 2 vCPUs and 4GB of RAM.
Amazon instances are built on Intel Xeon processors operat-
ing at 2.5GHz, with Turbo up to 3.3GHz. We used 18 VMs
for our measurements.

EDIM122 is an Open Nebula23 linux cloud designed
for data-intensive workloads. Backend nodes use mini ITX

19http://gtr.rcuk.ac.uk/project/F8C52878-0385-42E1-820D-D0463968B3C0
20http://www.lrz.de/services/compute/supermuc/systemdescription/
21http://aws.amazon.com/ec2/instance-types/
22https://www.wiki.ed.ac.uk/display/DIRC
23http://opennebula.org

motherboards with low powered Intel Atom processors with
plenty of space for hard disks. Each VM in our cluster had
4 virtual cores – using the processor’s hyperthreading mode,
3GB of RAM and 2.1TB of disk space on 3 local disks. We
used 14 VMs for our evaluations.

Table IV
DCI FEATURES

Load Terracorrelator Super-
MUC

Amazon
EC2

EDIM1

DCI type shared-memory cluster cloud cloud
Enactment
systems

MPI, multi MPI,
multi

MPI,
Storm,
multi

MPI,
Storm,
multi

Nodes 1 16 18 14
Cores per
Node

32 16 2 4

Total Cores 32 256 36 14
Memory 2TB 32GB 4GB 3GB
Workfklows xcorr, int_ext,

sentiment
xcorr,
senti-
ment

xcorr xcorr,
int_ext,
senti-
ment

VI. RUN-TIME STREAM COMPRESSION

A workflow’s performance can suffer from large data trans-
fers between storage systems (e.g. databases or file systems)
and/or DCI(s) (e.g. cloud, cluster, grid) resources. There-
fore, we propose a run-time adaptive compression strategy
in dispel4py, which we expect to reduce data-transfer
bottleneck and improve the scalability of the workflows. The
compression strategy will be transparent for users and it will
be placed in two levels:

• between two connected PEs’ instances, which are lo-
cated in different nodes from the same or different
DCI’s resources.

• between PEs and storage systems.
When the workflow is run using multiprocessing or sequen-
tial mapping, we will not apply compression between the
connected PEs, with the exception of the first and the last
ones, because the data is transferred via memory and not
via a network. Therefore, compression between PEs will be
considered only when MPI and Storm mappings have been
selected.

Instead of passing data directly to an I/O system or
between two connected PE instances located in different
computing resources, it will first be intercepted by the com-
pression strategy which, if considered beneficial, losslessly
compresses the data with LZ4 [25] algorithm. We have se-
lected this algorithm, because we have performed previously
[26] an exhaustive empirical study with synthetic24 and real
files25. The studies show that the shortest compression and
decompression times are achieved by LZ4, Snappy [27], LZO
[28], RLE [29], Huffman [30].

24http://effort.is.ed.ac.uk/Compression/SyntheticResults.htm
25http://effort.is.ed.ac.uk/Compression/CompressionFiles.pdf

Our design for compression consists of three steps:

• Deciding when to compress: The first x iterations of the
workflow will be used for transferring the data without
compression (odd iterations) and with compression
(even iterations). The strategy will record the execution
times for each PE for each iteration and the com-
pression ratios for the iterations when compression is
applied. At the end of the x iterations, the strategy will
have enough information to decide which data streams
should be compressed. The compression decisions, will
be stored in the registry with relevant information about
the workflow: DCI, mapping and parameters used.

• Applying the compression decisions: For the rest of the
workflow’s iterations the compressions chosen will be
applied.

• Re-evaluating the compression decision: Every n26 it-
erations of the workflow, the decisions will be re-
evaluated to check whether the network conditions or
data features have changed, updating the compression
decision in the registry.

The compression decisions applied to each PE will be com-
pletely independent from each other. However, they will be
dependent of the mapping and DCI selected for running the
workflow. It could happen that different decisions are taken
when the workflow is executed using the same mapping
on different DCIs. The compression strategy will check
at the beginning of a workflow’s execution whether there
are compression decisions stored in the registry for that
particular workflow, mapping, DCI and input parameters.
In which case, those decisions will be applied initially
(avoiding the first strategy’s step), and at the n iteration,
they will be re-evaluated, updating the decisions if needed.

VII. CONCLUSIONS AND FUTURE WORK

In this paper we presented dispel4py, a novel Python
library for streaming, data-intensive processing. The novelty
of dispel4py is that it allows its users to express their
computational need as a fine-grained abstract workflow,
taking care of the underlying mappings to suitable resources.
Scientists can use it to develop their scientific methods and
applications on their laptop and then run them at scale on a
wide range of e-Infrastructures without making changes.

We demonstrate with three realistic scenarios borrowed
from the field of seismology, astrophysics and social com-
putation, that dispel4py can be used to design and
formalise scientific methods (the PE compositions and their
connectivity). dispel4py is easy to use, it requires very
few lines of Python code to define a workflow, while the
PEs can be re-used in a well-defined and modular way
by different users, in different workflows and executed on
different platforms via different mappings.

26The best values for x and n will be determined after implementation

To help make data-intensive methods more reproducible
and open, dispel4py provides a registry and provenance
mechanisms. By using the registry, users store their work-
flows (and their components) with their relevant annotations,
for further runs and/or for sharing them with others. The
provenance mechanism allows users to analyse at runtime
the provenance information collected and it offers combined
operations to access and download data, which may be
selectively stored at runtime, into dedicated data archives.
Moreover it foster for a rapid diagnostic of logical errors
and failures thanks to a flexible metadata structure and errors
capturing.

In the near future we will add optimisation mechanisms
based on a number of features, such as implementing
the run-time compression strategy, developing additional
diagnostic tools that can select the best target DCIs and
enactment modes automatically. Additionally, we aim to add
more mappings, such as for Apache Spark27.

ACKNOWLEDGMENT

This research was supported by the VERCE project (EU
FP7 RI 283543) and the Terracorrelator project (funded by
NERC NE/L012979/1).

REFERENCES

[1] I. Altintas, C. Berkley, E. Jaeger, M. Jones, B. Ludascher,
and S. Mock, “Kepler: an extensible system for design and
execution of scientific workflows,” in Proceedings of 16th In-
ternational Conference on Scientific and Statistical Database
Management, June 2004, pp. 423–424.

[2] E. Deelman, G. Singh, M.-H. Su, J. Blythe, Y. Gil, C. Kessel-
man, G. Mehta, K. Vahi, G. B. Berriman, J. Good, A. C.
Laity, J. C. Jacob, and D. S. Katz, “Pegasus: A framework
for mapping complex scientific workflows onto distributed
systems,” Scientific Programming, vol. 13, no. 3, pp. 219–
237, 2005.

[3] D. Churches and etal., “Programming scientific and dis-
tributed workflow with Triana services,” Conc.&Comp.: P&E,
vol. 18, no. 10, pp. 1021–1037, 2006.

[4] M. Wilde and etal., “Swift: A language for distributed parallel
scripting,” Parallel Comp., vol. 37, no. 9, pp. 633 – 652, 2011.

[5] Y. Simmhan and etal., “Building the Trident Scientific Work-
flow Workbench for Data Management in the Cloud,” in
ADVCOMP. IEEE, October 2009.

[6] X. Llorá, B. Ács, L. S. Auvil, B. Capitanu, M. E. Welge, and
D. E. Goldberg, “Meandre: Semantic-Driven Data-Intensive
Flows in the Clouds,” in IEEE Fourth International Confer-
ence on eScience. IEEE Press, 2008, pp. 238–245.

[7] Z. Falt and etal., “Bobolang: A Language for Parallel Stream-
ing Applications,” in Proc. HPDC. ACM, 2014, pp. 311–314.

27https://spark.apache.org/

[8] D. De Roure and etal., “The Design and Realisation of
the myExperiment Virtual Research Environment for Social
Sharing of Workflows,” FGCS, vol. 25, pp. 561–567, 2009.

[9] P. Fraternali and S. Paraboschi, “Chimera: A language for
designing rule applications.” in Active Rules in Database
Systems, 1999, pp. 309–322. [Online]. Available: http://dblp.
uni-trier.de/db/books/collections/patton99.html#FraternaliP99

[10] K. Belhajjame and etal., “A Suite of Ontologies for Preserv-
ing Workflow-Centric Research Objects,” J. Web Semantics,
in press 2015.

[11] L. Lefort and etal., “W3C Incubator Group Report – review of
Sensor and Observation ontologies,” W3C, Tech. Rep., 2010.

[12] D. Rogers and etal., “Bundle and Pool Architecture for Multi-
Language, Robust, Scalable Workflow Executions,” J. Grid
Comput., vol. 11, no. 3, pp. 457–480, 2013.

[13] M. P. Atkinson, C. S. Liew, M. Galea, P. Martin, A. Krause,
A. Mouat, Ó. Corcho, and D. Snelling, “Data-intensive
architecture for scientific knowledge discovery,” Distributed
and Parallel Databases, vol. 30, no. 5-6, pp. 307–
324, 2012. [Online]. Available: http://dx.doi.org/10.1007/
s10619-012-7105-3

[14] MPI Forum, “MPI: A message-passing interface standard,” IJ
of Supercomputer Applications, vol. 8, pp. 165–414, 1994.

[15] A. Misra, A. Misra, M. Blount, M. Blount,
A. Kementsietsidis, A. Kementsietsidis, D. Sow, D. Sow,
M. Wang, and M. Wang, “Advances and Challenges
for Scalable Provenance in Stream Processing Systems,”
Provenance and Annotation of Data and Processes,
vol. 01, pp. 253–265, 2008. [Online]. Available:
http://www.springerlink.com/index/w5865j066612l840.pdf

[16] W. D. Pauw, M. Letja, B. Gedik, and H. Andrade, “Visual
debugging for stream processing applications,” Runtime
Verification, pp. 18–35, 2010. [Online]. Available: http:
//link.springer.com/chapter/10.1007/978-3-642-16612-9_3

[17] A. Spinuso and etal., “Provenance for seismological process-
ing pipelines in a distributed streaming workflow,” in Proc.
EDBT ’13. ACM, 2013, pp. 307–312.

[18] M. Atkinson, M. C. S. Claus, R. Filgueira, and et al., “Verce
delivers a productive e-science environment for seismology
research,” in IEEE International eScience Conference, 2015.

[19] R. Filguiera, I. Klampanos, A. Krause, M. David, A. Moreno,
and M. Atkinson, “Dispel4py: A python framework for
data-intensive scientific computing,” in Proceedings of the
2014 International Workshop on Data Intensive Scalable
Computing Systems, ser. DISCS ’14. Piscataway, NJ,
USA: IEEE Press, 2014, pp. 9–16. [Online]. Available:
http://dx.doi.org/10.1109/DISCS.2014.12

[20] J. Ruiz, J. Garrido, J. Santander-Vela, S. Sánchez-Expósito,
and L. Verdes-Montenegro, “Astrotaverna - building work-
flows with virtual observatory services,” Astronomy and Com-
puting, vol. 7–8, no. 0, pp. 3–11, 2014, special Issue on The
Virtual Observatory: I.

[21] A. Pak and P. Paroubek, “Twitter as a corpus for
sentiment analysis and opinion mining,” in Proceedings of
the International Conference on Language Resources and
Evaluation, LREC 2010, 17-23 May 2010, Valletta, Malta,
N. Calzolari, K. Choukri, B. Maegaard, J. Mariani,
J. Odijk, S. Piperidis, M. Rosner, and D. Tapias,
Eds. European Language Resources Association, 2010.
[Online]. Available: http://www.lrec-conf.org/proceedings/
lrec2010/summaries/385.html

[22] H. Cho, J. Lee, and S. Kim, “Enhancing lexicon-based
review classification by merging and revising sentiment
dictionaries,” in Sixth International Joint Conference on
Natural Language Processing, IJCNLP 2013, Nagoya,
Japan, October 14-18, 2013. Asian Federation of Natural
Language Processing / ACL, 2013, pp. 463–470. [Online].
Available: http://aclweb.org/anthology/I/I13/I13-1053.pdf

[23] F. Å. Nielsen, “Afinn,” Richard Petersens Plads, Building 321,
DK-2800 Kgs. Lyngby, mar 2011.

[24] S. Baccianella, A. Esuli, and F. Sebastiani, “Sentiwordnet
3.0: An enhanced lexical resource for sentiment analysis
and opinion mining,” in Proceedings of the Seventh Inter-
national Conference on Language Resources and Evaluation
(LREC’10), N. C. C. Chair), K. Choukri, B. Maegaard, J. Mar-
iani, J. Odijk, S. Piperidis, M. Rosner, and D. Tapias, Eds.
Valletta, Malta: European Language Resources Association
(ELRA), may 2010.

[25] “Real time data compress,” 2012,
"http://fastcompression.blogspot.co.uk/p/lz4.html".

[26] R. Filgueira, M. P. Atkinson, Y. Tanimura, and I. Kojima,
“Applying selectively parallel I/O compression to parallel
storage systems,” in Euro-Par 2014 Parallel Processing
- 20th International Conference, Porto, Portugal, August
25-29, 2014. Proceedings, ser. Lecture Notes in Computer
Science, F. M. A. Silva, I. de Castro Dutra, and V. S. Costa,
Eds., vol. 8632. Springer, 2014, pp. 282–293. [Online].
Available: http://dx.doi.org/10.1007/978-3-319-09873-9_24

[27] J. Russell and R. Cohn, Snappy. Book on Demand,
2012. [Online]. Available: http://books.google.co.uk/books?
id=PXajMQEACAAJ

[28] Markus Franz Xaver Johannes Oberhumer, “LZO,” 2002,
http://www.oberhumer.com/opensource/lzo/lzodoc.php.

[29] R. Zigon, “Run length encoding,” Dr. Dobb’s Journal of
Software Tools, vol. 14, no. 2, Feb. 1989.

[30] D. E. Knuth, “Dynamic huffman coding,” J. Algorithms,
vol. 6, no. 2, pp. 163–180, 1985.

