Renewable Energy for Radio Astronomy

Lourdes Verdes-Montenegro Juande Santander Vela Instituto de Astrofísica de Andalucía-CSIC Granada On behalf of CTAER, IT-Portugal, ASTRON-Netherlands, MPIfR-Germany

AERAP Workshop: AERAP Framework Platform Discussion Workshop Brussels, March 6th 2013

Talk Outline

(...a Spanish radioastronomer)

What has Radioastronomy to do with Renewable Energy?

- * Current challenges
- * A 1st step: EC funded project BIOSTIRLING4SKA
- * Benefits for Africa

* Benefits for Europe

* Key actions

Global benefits

(do we need to separate them?)

Looking for the faintest gas

The faintest gas escapes to the current radiointerferometers

* MINECO-funded Scientific Network

UV, IAA, CAB, OAN, UB, IEEC, UGR, UJ, IAC, IFCA, UPTC

- June 2011: kick-off meeting in CSIC showed broad and strong scientific interest of Spanish researchers in SKA
- September 2011: MICINN request Spain to participate in SKA as an Observer

* MINECO-funded Feasibility Study for Spanish Technological Participation in the SKA

- * 14 organisations: 7 research institutions (4 from CSIC) + 8 Universities (all over Spain)
- Close collaboration with
 - Fractal (Astronomy & Instrumentation Industry)
 - Induciencia (Science & Technology Industry Association)
 - CTAER (Centro Tecnológico Avanzado de Energías Renovables)

	Т	Г	Г					Π	s					<u> </u>	<u> </u>				e	Т								s		Τ	Т	٦
ÁREAS TECNOLÓGICAS	CITURE	DO	LTRAN INNOVACIÓN	RIEMA	STURFEITO	RISA	RYOVAC	EIMOS	MPRESARIOS AGRUPADO	actal	MV	D	IS	MOC	(4-TEKNIKER	ISA	ITEGRASYS	SOFOTON	(ION Industry & Aerospac	MA	DAX	ROCON SYSTEMS	CHWARTZ-HAUTMONT	ENER	EVEN SOLUTIONS	AFCO METAWIRELESS	ECNOBIT	ELSTAR Vacuum Solutions	HARSIS TECHNOLOGY	E	INCI ENERGIA	LC Photonics
Analog ASIC design	A	2	A	A	A	Ū	ō		Ē	ŭ.	Ū	<u>ن</u>	T	1	E	4	4	SI	â	8	Ξ	PF	Ň	S	S	¥	F	Ĕ	Ê	F	5	Σ
Analog beamforming hardware	+					<u>^</u>			- 3					-								-	-				^		x	-	+	×
Analog beamforming SW	1															x													x		+	-
Analog filterbank design	1	1		1	÷ - 2	-	1	0.00						1		x					1	-	1	0.00	-		x					
Analog sensors	1	x													x	x					_	_			x		х		х	_	_	-15
Analog signal processing	-	-				х			_			_		-	x	x	х			_	_	_	_	х	х		х	_	х	-	+	-15
Antenna system beam profile measurement	X	+	-	-						-		-		-		-	X		-	-	-	-	-		-		-	-	-	+	+	-10
Cabling	×	+	\vdash			x			x			-		-	-		x			-	-	-	-	-	-		-	-	x	+	+	-18
Civil engineering	+	-	\vdash			Ê		-	x					x	-						-	-	-	x	-		-		Â	+	+	-18
Control system design	x		\square			x				x		x		x	x		x		x			x		x			x		x	x	+	-15
Cooling: Cryogenics						x	х						х	x	x						х							х		х		
Cooling: Heat recovery	-								х				х	x	x						х							х		х		
Cooling: Thermal insulation	-	1	-	-			x						x	x							х							x				
Cost modelling	-	-	-						-					x	x	x											-			-	-	-
Digital ASIC design	+	1	-			v	\vdash		-				X			x	-		-		х	-					×		v	x		-
Digital beamforming	+		\vdash			X	\square		-							x						-					^		^	x	+	
Digital Fieldbuses	1		\vdash			x										Ê	-					х								^	+	
Digital filterbank design									-							x									-		x					
Digital sensors		x				x									x	x									x		x					
Digital signal processing		x				x	-				х		_		x	x	х								х		х			х		
Digital signal transport networks	1					x			_		х				x							_					х				-	
Dipole antenna array construction	x	-	-		х				х				х	x							_	_					_			х	-	-11
Dipole antenna array design	X	-	-	-					x			-	x	x	-	-				-	-	-	_	-	-		-	-	-	x	+	-18
Dish antenna construction	×	×	-		x			-	x				~	×	-	\vdash				-	-	-	x	-	-		-	-	-	×	+	-18
Electro-magnetic compatibility design	-	+	\vdash		-	x		-	x				~	<u> </u>	×					-	-	-	-				×		-	^	+	-12
FFT digital signal processing	t		\vdash			x			^		x				x	x								x			x			x	+	
FPGA computing	t					x					x				x	x			x			x		x	x		x			x		
FPGA design						x			_		х				x	x			х		_	х		х	x		x					
High Performance Computing: event-based computing				-				x			х	x	-												х	х						
High Performance Computing: GPU computing	-							х	- 1		х	x		_					х			_			x		_			_	_	-
High Performance Computing: grid computing	+	-						х	_		х	x		-		x				_	_	_					_			-	+	-1
High-accuracty timing systems	+	-	-			X		x	-		X	X		-	-	X	x				-	-	-		x		-		X	-	+	-18
Logistics engineering	+	+	+			X			-			-		×		\vdash				x	-	-	-	x	-		-		x	+	+	-12
Low-RFI Power conversion	+	-		-	0.0									L^			-						-	^	-		-		-	x	+	
Mecatronics	+	x	x									x	x	x	x						x	-		x				x	x	<u>^</u>	+	
Mechanical engineering	x	x	x					1	х				x	x	x						х			х				х	x			
Mechanical tooling	x	x	х										х	x	х						х			х				х				
Monitoring SW and systems	x	x				x		x		x	х	x			x				х		_									_	_	-10
Non-cryogenic LNAs (70MHz-450MHz)	+	-	-			-		-	_		_	-		-	-	x	-					-	-	-			_	_	-	x	+	-15
Photovoltaic solar thermal energy	x	x	+	~	-	~		-	×			~			x	\vdash	-	x		X	-	-	-	~			~	-	-	-	-	-18
Power engineering: budgeting	+	+	\vdash	×	-	×		-	×	~		X		×	-	-				x	-	-	-	×			x		-	-	×	-18
Project management	1	x		x		x		x	^	Ê	x	x	x	x	x	x					x			x		x				x	+	
RF engineering 0,03-0,15 m (2-10GHz)													x			x	x									x				x		
RF engineering 0,12-0,30 m (10-25GHz)																x	х									х				x		
RF engineering 0,15-0,7 m (450MHz-2GHz)									1							x	х													х		
RF engineering 0,7-4 m (70-450MHz)																x	х				_	_			х					х		-12
RF engineering: risk assessment	+	-	-	-					_			-		-	-	x			_	-	_	-	-		- 1		-	_	-	x	+	-18
RF Interference measurement	+	+	-	-					-	-		-		-	-	-	x				-	_	-				-		-	x	+	-18
RF interference sensitivity	+	×	-						-			-		-		×	x				-	-	-				-		-	×	+	¥
RF optical simulation	+	x	\vdash						-					-		x	-				-	-			-	x	-			+	+	x
RF system simulation	+	ŕ	\square						-							x						-				~				x	+	-
RFI shielding						x										x														x		
Risk assessment						х		х				х		x	х	х																
Sensor networks	-								_			x			x		х				_			х		х	х		х	_	_	-
SW engineering	+	x	-			x		х	-	x	х	x		-	-		х		х			х		х	х	х	х	_	х	-	-	-8
Sw engineering: benavioural modelling	-	-	-		-	X	\vdash	x	-		X	X		-	-	\vdash	\vdash		X			-					x			\rightarrow		
Sw engineering: data modelling SW engineering: high-performance computing algorithm		-	-			×		×			×	×		-					×			-		Y	Y		×				-	
SW engineering: human-computer interaction		x				X		×			X	X							×					x	^		x				-	
SW engineering: quality assurance		1 n				x		x			x	x							x						x		x					
SW engineering: requirements analysis						x		x			x	x							x					x	x		x					
SW engineering: risk assessment						x		x	-		х	x							х						x		x					
SW engineering: structural modelling		x				x		x			x	x							х		х						x					
SW engineering: system simulation	-	x				x		x			x	x							х		х						x					
Synchronisation and timing equipment	+	-				x	\square		_								х		\square		_	х					_	-	-		-	-
System engineering	+	×	X			X	\vdash	x	-	x	x			X	×	x	x	\vdash	\vdash		X	_		x	x		~	-		x	+	
Wavelet digital signal processing	+	-	-			×	\vdash		-					-	-						x	-		-			×			-	+	
Wideband receiver design	+	1	1					-	-					-	-	x					-	-				x	^		-	×	+	-15

As part of mapping of Spanish industrial capabilities with SKA technologies:

Key area: Power

SKA Work Packages	ACITURRI	AIDO	ALTRAN INNOVACIÓN	ARIEMA	ASTURFEITO	CRISA	CRYOVAC	DEIMOS	EMPRESARIOS AGRUPADOS	FRACTAL	GMV	GTD	HTS	IDOM	IK4-TEKNIKER	INSA	INTEGRASYS	ISOFOTON	IXION Industry & Aerospace	JEMA	LIDAX	PROCON SYSTEMS	SCHWARTZ-HAUTMONT	SENER	SEVEN SOLUTIONS	TAFCO METAWIRELESS	TECNOBIT	TELSTAR Vacuum Solutions	THARSIS TECHNOLOGY	Ш	VINCI ENERGIA	VLC Photonics
Dish-array element		х	х	-	х		х		х			1.0	х	х	х	_					х	-	х	х		х				х		х
Low Frequency Aperture Array		0.0	х		х	- 2	x	8 18	x			8	х	х	x	x		x x x														
Signal and Data Transport / Sync and Timing	ming x x x x							х		х	х		х	х	x			х														
Central Signal Processor		x	-		6.18	х		х			x	х		÷	<u> </u>	x	x	8 8				- 2		х	x	х	x	1	x	x		
Science Data Processor					S - 6	х		х		х	х	х		÷	82 - 8	х		5 8	x		1	20		х		х	x	1 8		10		
Telescope Manager					~			х	-	x	x	х			x	х			x													
Power		х		х	х	х		0.00			0.00	х		х	<u> </u>			х	-	х				9 - 93					x	1	x	
Site and Infrastructure		х							x			Ĩ.		х		х								x			x	1				
Science																											T					
Management and Engineering			х			х		x	х	х	х	1.1	x	х		x	x							x					x			

Areas of expertise vs SKA WPs of the registered companies

What has Power to do with Radioastronomy beyond other Research Infrastructures?

Massive Data Flow, Storage & Processing

MASSIVE DATA FLOW, STORAGE & PROCESSING

UNIVERSITY OF MANNHEIM

FIND OUT MORE AT www.top500.org

	NAME	8PEC8	BITE	COUNTRY	CORES	Rear Phen's
T	Sequoia	IBM BlueGene/Q, Power BQC 16C 1.60 GHz, Custom interconnect	DOE / NNSA / LUNI.	USA	1,572,864	16.33
2	K computer	Fujitsu SPARC64 VIIIfx 2.0GHz, Tofu interconnect	RIKEN AICS	Japan	705,024	10.51
З	Mira	IBM BlueGene/Q, Power BQC 16C 1.60 GHz, Custom interconnect	DOE / SC / ANL	USA	786,432	8.153
4	SuperMUC	IBM iDataPlex DX360M4, Xeon E5-2680 8C 2.70GHz, Infiniband QDR	Leibniz Rechenzentrum	Germany	147,456	2.897
5	Tianhe-1A	NUDT YH MPP, Xeon X5670 6C 2.93 GHz, NVIDIA 2050	NUDT/NSCC/Tianjin	China	186,368	2.566

$1 \text{ Gigaflops} = 0,5W \qquad 1 \text{ Exaflops} = 500\text{MW}$

Current challenges Not Only How Much, but How

- ★ Far from man-made radio frequency emission → away from power supplies (Energy production, distribution)
- * Geographically distributed (Distributed energy generation)
- * 24/7 operation (Storage)
- Cooling of digital electronics in a hot climate
- Reliable

With renewable energy

* Affordable

Radioastronomy is already challenging industry

Current challenges

VLBI Antenna

Energy Consumption: ~ 1 GWh/year ~ several 300 People Villages (with European assumptions!)

Current challenges

Mount Fletcher, Eastern Cape

Energy Consumption: ~ 20 GWh/year

5000 People Town

Current challenges

Brugge

100.000 People City

BIOSTIRLING4SKA Dish Stirling systems for SKA

***** FP7-ENERGY-2012-1 Collaborative Project

- * Cost Effective and Efficient Approach for a New Generation of Solar Dish-Stirling Plants Based on Storage and Hybridization
- * 14 Partners all over Europe: 6 in Spain (PI), 8 in Iberia
- * Total budget: 6.191.682 € (36 months)
 - Requested contribution from EC: ~4 M€

ENERGY.2012.2.5-1: Research, development and testing of solar dish systems

BIOSTIRLING --> 4SKA

- 1. GESTAMP RENEWABLE INDUSTRIES (GRI)
- 2. ALENER SOLAR
- 3. CLEANERGY
- 4. AGC GLASSEUROPE
- 5. UNIVERSITY OF JYVÄSKYLÄ (JYU)
- 6. CENTRO TECNOLOGICO AVANZADO DE ENERGIAS RENOVABLES (CTAER)
- U. SEVILLE (US) 7. 8. CSIC-IAA ASTRON 9. **10. IT AVEIRO** 11. MPIfR **12. FRAUNHOFER-ISE** 13. LÓGICA **14. GESTAMP SOLAR** STEEL (GSS)

BIOSTIRLING

- 1. GESTAMP RENEWABLE INDUSTRIES (GRI)
- 2. ALENER SOLAR
- 3. CLEANERGY
- 4. AGC GLASSEUROPE
- 5. UNIVERSITY OF JYVÄSKYLÄ (JYU)
- 6. CENTRO TECNOLOGICO AVANZADO DE ENERGIAS RENOVABLES (CTAER)
- 7. U. SEVILLE (US) **CSIC-IAA** 8. ASTRON 9. **10. IT AVEIRO** 11. MPIfR **12. FRAUNHOFER-ISE** 13. LÓGICA **14. GESTAMP SOLAR** STEEL (GSS)

BIOSTIRLING4SKA

Dishes with Stirling engines:

Highest efficiency of solar power generation system

linear Fresnel

parabolic dish

 Not yet fully commercialized: Reduce costs for mass manufacturing

• 24h/7d Interdisciplinary approach Hybridization: Biomass / Energy Storage

 Life time **Innovative Materials**

Radioastronomy will change the landscapes of Africa

DISH OF THE DAY

Satellite dishes across Africa are being converted into radio telescopes for very long baseline interferometry (VLBI) astronomy.

But only the landscape?

The African VLBI <u>Network expected to encourage co-</u> location of:

GPS stations, automated **climate change monitoring weather** stations **seismic** activity warning systems.

Dr <u>Tshepo Seekoe</u>, <u>Chief</u> Director, Radio Astronomy <u>Advances at</u> the <u>Department</u> of Science and Technology

Conversion work on the dish in Ghana

.. And Power supply?

To use <u>the increasingly available broadband</u> infrastructure for research and <u>economic benefits</u>."

Former Minister Pandor

But only the landscape?

Opportunity for remote local populations to get direct benefits by:

Give me fish

Teach me to

fish

- Access to energy supply
- Maintaining the facilities
- Getting feedback to solve domestic problems

- Stimulating interest in education into technical domains
- Training in new skills
- Creation of new local jobs and businesses.
- Potential for fair-trade and cross-sectorial economy

- Renewable energies as an area for European leadership:
- Establishing a roadmap for sustainable energy
 - Reducing global CO2 emissions

Renewable energies as an area for European leadership:

- Research with Industry/Academia partnership (e.g BIOSTIRLING)
- Consolidation of leadership

Radioastronomy as a shuttle to export European expertise

VLBI international network

- Renewable energies as an area for European leadership:
 - Research with Industry/Academia partnership (e.g BIOSTIRLING)
 - Consolidation of leadership

Renewable energies as an area for European leadership:

- Research with Industry/Academia partnership (e.g BIOSTIRLING)
- Consolidation of leadership

Radioastronomy as a shuttle to export European expertise

Only global project on ESFRI list: +67 institutes in +20 countries participating (and increasing)

Key actions

- Research and Development of technologies
 - Key for 24h/7d supply (storage, hybridization, H2 fuel cells)
 - According to requirements of the installations +local renewable energy resources
 - Avoiding radio frequency interference

Key actions

- With a vision of:
 - Impact analysis in the sites
 - Potential for excess power
 - R&D aspects for large scale implementation and use
 - Uplifting the skills levels in local communities:
 - Joint bursary programs with industry

Global benefits

- Direct technology transfer:
 - Computing resources consume 1.5% of the world energy. This percentage should <u>double in 5 years</u> (source: European Codes of Conduct for ICT / 2009)
- 2012 International Year of Sustainable Energy for All 1.6 billion people could benefit from radioastronomy developments AND facilities

Synergies between ICT and Power for more efficient matching of local power needs and power generation capabilities (**smart-grids**)

Global benefits

Radioastronomy facilities as Prototype/demonstrator for sustainable Mega Science Infrastructures with 0% Carbon Footprint

Research Infrastructures: have both **responsability** and **need** for reduced (sustainable) energy consumption

Explore the Cosmos using Green energies while bringing down to Earth:

- Access to the means (energy, internet)
- But even more important: innovative access to knowledge

La ventura va guíando nuestras cosas mejor de lo queacertáramos a desear, porque ves allí, amígo Sancho, donde se descubren treínta, o pocos más, desaforados gígantes, con quíen píenso hacer batalla [...] que esta es buena guerra.

Key actions

- Characterise the power and energy requirements of radio astronomy installations
- Develop impact analysis of renewable power scenarios on radio telescopes sites
- This includes aspects of radio interference and potential for excess power
- Identify R&D aspects for large scale implementation and use
- Promote joint bursary programs with industry engaging on teaching of sustainable energy, energy efficiency and resource conservation. Energy has a long term investment cycle.
 Hence, it presents a unique opportunity to promote market and company fidelities via education.
- Developing a training programme for the construction and maintenance of renewable energy plants that can be used to train local engineers and technicians

Specific goals

- Support the development of the key technologies (storage, hybridization, H2 fuel cells)
- Identification of candidate renewable energy technologies according to requirements of the installations and local renewable energy resources
- Development of technologies and techniques to avoid or shield radio frequency interference of power plants and equipment
- Uplifting the skills levels in local communities to participate in the operations and maintenance of any infrastructure deployed in their immediate vicinities

But only the landscape?

The African VLBI Network expected to encourage co-location of:

- **GPS** stations,
- automated climate change monitoring
- weather stations
- seismic activity warning systems.

Dr Tshepo Seekoe, Chief Director, Radio Astronomy Advances at the Department of Science and Technology

Conversion work on the dish in Ghana

.. And Power supply?

To use the increasingly available broadband infrastructure for research and economic benefits,"

Former Minister Pandor